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Preliminary — Likelihood-based Generative Models

Sample {x1, x?2, ..., x™} from Pgqeq (%)

Real Image m m
: . 0" =arg mé':lxl—[Pg(xi) = arg max log l_lPe(xi)
: i=1 i=1
- m
=arg mgaxz logPe(x) =~ arg max Ex-p,,.,[logPe(x)]
‘ G(z) =x =1
(not related to 0)
= argmgx [ Paaea(l0gPo@dx = [ Paaea()109Paata @ix
X X
Difference between P and P
P(Z) 0 Pe(X) Pdata(x) =arg meaxf Piata(x)log P::tfgc) dx =arg mein KL(Pygg] |P931ata 0

X

Maximum Likelihood = Minimize KL Divergence

o Py.a(X): probability distribution of the data

e Py(x): approximate probability distribution of the data

e P(z): probability distribution of the latent variable,
usually a Gaussian distribution
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Preliminary — Evidence Lower Bound (ELBO)

log p(x) = log p(x) / q¢(z|x)dz

e In practice, we usually maximize the _ / 26(21%)(log p(x))dz
log likelihood.
o Sometimes, the log likelihood is also = %EIX) [log p(x)]

called evidence. p(x,z)
= B |log

e We can maximize the ELBO instead.  gelzlx) p(z|x)
p(x,2)qe(z|x)

= B
q¢(2|x) o8 p(z|x)qq(z|x)

q¢(z|x)

= B |log p(x.2) + B
qe(2|x) qe(z|x) | q4(zlx)

— B log P(x' 2)
e (z]x) q¢(z|x)

> E |log pix, z) :
qe(z|x) (I¢(Z|x)

log

p(z|x)

+ Dk (q¢(z]x)||p(z|x))

Evidence Lower Bound (ELBO)
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Preliminary — Denoising Diffusion Models

o Diffusion Process (Forward Process)

Add noise Add noise

—_—

e Denoising Process (Backward Process)

X
Xo

z
Xy
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Preliminary — ELBO of Diffusion Models

Eq(x,|x,) [l0g po(x0lx1)]: @ reconstruction term,  logp(x) = log / p(xo.r)dxy.1
predicting the log probability of the original o(x0)
data sample given the first-step latent. = By(xirlxo) [log q(xh;'(xo)

Dir(q(xrlx0)llp(x1)) : represents how close the = Bq(xi1x0) 108 Po(xolx1)] = Dkr(q(xrlxo)llp(x1))

distribution of the final noisified input is to -
— ) BaGateo)| [Prr(g(xce—1lxz, xo ) Ipo (xe-1lx¢))] -
the standard Gaussian prior. tzz;‘ 2] S e o e 11

T

> Eqxlxo) [PkL(q(xe11x2,x0)|Ipg (x0-11x0))] - @

“~* denoising matching term. The q(X,_{|X, Xo)
defines how to denoise a noisy image x;
with access to what the final, completely
denoised image x, should be.
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Diffusion for Language Modeling (Continuous)

e Convert to Continuous State Space:

Reverse process —>  Forward process €<—  Gaussian Noise * Rounding T TTT T s s ~
| \
M M) M) O : !
Po(Z¢-112¢) Pe(W|zo) O w* I
... V .. ° &_/ O Wy E :
I qlz) O J qpzlw) O :
7 7 7 ¢ ' E.g. Open-Domain Dialogue |,
t t—-1 0 : M e . ‘
Embedding map
Partial Gaussian Noise < > Word Embeddings <—> Text Sequence to Sequence
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Diffusion for Language Modeling (Discrete)

o Reformulate Two Key Equations in Discrete State Space:
Suppose we have a vocabulary table of size K = 4: “apple”, “banana”, “carrot’, “[MASK]".

Define a transition matrix Q, € RE*X at time t that govern the corruption process:

0.1 0.1 0.1 0.7
~ 0.1 0.1 0.1 0.7
Qr = 0.1 0.1 0.1 0.7
0.0 0.0 0.0 1.0

This means any normal token (e.g., “banana”) has a 70% chance of turning into [MASK]
at time t. Once a token becomes [MASK], it stays that way.



School of Computer Science é

Diffusion for Language Modeling (Discrete)

“apple”, “banana”, “carrot”, [MASK]".

« Forward Process: 0.1 0.1 01 07
0.1 0.1 0.1 0.7

q(x¢ | ©—1) = Cat(zy; p = 21-1Q¢) @=101 01 01 07
0.0 0.0 00 1.0

X;_1 IS @ one-hot row vector. For “banana”, x,_; = [0, 1,0, 0].

x:—10Q; = [0.1,0.1,0.1, 0.7]: give the probability of transitioning to other tokens.

how likely each candidate x;_4

o qlx;|xo)=Cat(z;p=20Q;), with Q;=Q1Q2...Q; /’ would result in the current x;

T _
— ) —_ w w _
° q(xt—l | xt’xo) — qxe | xe—1, x0) q(x¢—1 | xp) — Cat (wt—l;P _ tQt ®© OQt 19\

q(xt | xo) zoQ, ;]
how likely x; was generated / how likely each x;_; was
from the original input x generated from the original input x,

9
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Large Language Diffusion Models - Pretraining

e This paper introduces large language diffusion model (LLaDA), with discrete states
formulation. Each token can only be corrupted to [MASK] token in this paper.

Mask all tokens independently

. _ X0 ~ Pdata, t ~ U(07 1]
v+ Maskratiot ~ U(0,1)
|
Mask predictor
¢ A This is like the BERT pretraining phase but with
random mask ratio between 0 to 1.
><] Mask token { Remask

Non-mask token , Random mask

10
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Large Language Diffusion Models — SFT

e To enhance the instruction following capability of LLaDA, the authors perform
supervised fine-tuning, similar to other autoregressive LLMs like Llama.

Pro{npt | Respf)nse | D0, T0 ™~ Pdata, t ~ U(Oa 1]
I | Tt ~ Qt|0(7”t|7'0)
v
= X
|

po IS a prompt, ry is a response.
Mask predictor Only apply masking to response.

| |
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Large Language Diffusion Models - Sampling

o LLaDA predicts all [MASK] tokens at once, then remasks some tokens and predicts
them again. By doing this, the model can iteratively generate a response.

Prompt  Response » Initialize the response as a sequence of [MASK] tokens with
-ZIZIZIXI t=1" length s. The total steps for generation is T. The time steps
_______________ - could be [0,/7, ..., 1], and we remask s x !/ tokens at
1221 |Zl > discrete time step i.
: | 2  Three different remask strategies:
! SRS BT N « Random: randomly remask tokens.
: I | g =  Low-Confidence: remask lowest confidence tokens.
| @ - Semi-Autoregressive: divide the sequence into several
Remask |} } 18 blocks and generate them from left to right.
oo 8
] t=0%
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Discussion and Conclusion

e Advantages of LLaDA:

Table 3. Comparison in the Poem Completion Task.

o Faster sampling than autoregressive model. Forward Reversal
_ N GPT-40 (2024-08-06)  82.7 34.3
o Better reversal reasoning ability. Qwen2.5 7B Instruct 75.9 38.0
LLaDA 8B Instruct 48.8 42.4

e Disadvantages of LLaDA:

o Harder to calculate the probability of a generated sequence. (Need Monte-
Carlo Estimations)

o Generated sequence length and total generation steps are hyperparameters.

o  Still lower performance on general tasks than autoregressive LLMSs.
14
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Thanks for your attention!
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