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Generative Model Formulation

• Observed Data (x): the data we directly observed

• Latent Variable (z): a vector captures the features of the observed data.

• Assumption: The observed data are generated by some latent variables.

• Mathematically, the observed data and the latent variables can be model as a joint
distribution p(x, z).



Generative Model 
Formulation

• Pdata(x): probability distribution of the data

• Pθ(x): approximate probability distribution of the data

• P(z): probability distribution of the latent variable,
usually a Gaussian distribution

P(z) θ Pθ(x) Pdata(x)



Maximum
Likelihood
Estimation



Maximum
Likelihood
Estimation



Computational 
Intractability of  
Maximum Likelihood
Estimation

• The marginal likelihood of the observed data x with respect to the model parameters θ is 
given by:

• Challenges:
• High Dimensionality: the latent space z might be high-dimensional.

• Non-linearity & Model Parameters: usually involves passing z through non-linear transformations defined by 
the parameters θ. This increases the complexity of the integral.

• Parameter Learning: On top of computing the integral, we often want to learn the best set of parameters θ 
that maximizes the likelihood of the observed data.
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Maximum Likelihood
Estimation

• In practice, we usually maximize the
log likelihood.

• Sometimes, the log likelihood is also
called evidence.

• We can maximize the ELBO instead.

Evidence Lower Bound (ELBO)



Denoising Diffusion Models

• Diffusion Process (Forward Process)

• Denoising Process (Backward Process)
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Diffusion Process

𝑥𝑡−1 𝑥𝑡

𝑎𝑡 1 − 𝑎𝑡



Denoising Process

xT Pθ(xT-1 | xT) xT-1 Pθ(x0 | xT-1) x0



ELBO in Diffusion Model

: a reconstruction term, predicting the log probability of the original data sample given the first-step 
latent.

: represents how close the distribution of the final noisified input is to the standard Gaussian prior.

: a denoising matching term. The q(xt−1|xt, x0) defines how to denoise a noisy 
image xt with access to what the final, completely denoised image x0 should be.

xt xt−1 x0



ELBO in Diffusion Model

• ELBO =

• 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥



q(xt|x0)

We assume:

Actually:

𝑥𝑡

𝑎𝑡 1 − 𝑎𝑡



q(xt-1|xt, x0)



Optimization Objective

• 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

• 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

• KL Divergence between two Gaussian Distribution:



Optimization
Objective

We finally derive the loss function in DDPM [1].



Questions for Audience



Question1

1. We first claim that the generative diffusion model is likelihood-based, which can be
optimized by maximum likelihood estimation.

2. We prove that we can maximize the ELBO as a proxy goal.

3. We derive the ELBO for diffusion models.

4. We conclude the same loss function in DDPM by some trivial substitutions and 
rearrangements.



Question2

1. We first claim that the generative diffusion model is likelihood-based, which can be
optimized by maximum likelihood estimation.

2. We prove that we can maximize the ELBO as a proxy goal.

3. We derive the ELBO for diffusion models.

4. We conclude the same loss function in DDPM by some trivial substitutions and 
rearrangements.



Question3

1. We first claim that the generative diffusion model is likelihood-based, which can be
optimized by maximum likelihood estimation.

2. We prove that we can maximize the ELBO as a proxy goal.

3. We derive the ELBO for diffusion models.

4. We conclude the same loss function in DDPM by some trivial substitutions and 
rearrangements.



Summary

1. We first claim that the generative diffusion model is likelihood-based, which can be
optimized by maximum likelihood estimation.

2. We prove that we can maximize the ELBO as a proxy goal.

3. We derive the ELBO for diffusion models.

4. We conclude the same loss function in DDPM by some trivial substitutions and 
rearrangements.



Discussion

• Main take away:

• q(xt|x0) and q(xt-1|xt, x0) are important. See[5].

• To derive different versions of , we have different formats but
mathematically equivalent loss functions.

• Some arguments regarding diffusion models:

• Humans don’t generate images in this way.

• The latents are restricted to the same dimensionality as the original input. (somehow
mitigated by the latent diffusion model [6])

• Sampling is an expensive procedure, as multiple denoising steps must be run. (can be
mitigated by faster sampling[7] or distillation[8].)
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Thanks

• Questions and comments?
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