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Motivation

• Matrix multiplication is probably the most important matrix operation. It is used widely 
in network theory, the solution of the system of linear equations, the transformation of 
coordinate systems, and population modelling, to name a few. [1]

• For example:

• When using a machine learning model for prediction, faster matrix multiplication 
results in faster prediction.

• When using a machine learning model for autopilot, faster matrix multiplication can 
enhance the response time.
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Matrix Multiplication

• Take two 2 ×  2 square matrices as an example.

•
𝑎1 𝑎2

𝑎3 𝑎4
∙

𝑏1 𝑏2

𝑏3 𝑏4
=

𝑎1 ∙ 𝑏1 + 𝑎2 ∙ 𝑏3 𝑎1 ∙ 𝑏2 + 𝑎2 ∙ 𝑏4

𝑎3 ∙ 𝑏1 + 𝑎4 ∙ 𝑏3 𝑎3 ∙ 𝑏2 + 𝑎4 ∙ 𝑏4

• This is the standard process to multiply these two matrices, which takes 8 multiplications and 4 
additions. In fact, we do not care about the number of additions.

• In the general case, when multiplying two matrices with dimensions 𝑄 × 𝑅 and 𝑅 × 𝑃, we need  
𝑄 × 𝑅 × 𝑃 multiplications since the result matrix has the dimension of 𝑄 × 𝑃, and each entry 
need R multiplications (take the inner product). 

• It seems like we can do nothing to accelerate this calculation.

• From the perspective of mathematics, we may not have a method to accelerate. However, we can 
accelerate this in computers.
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Addition and 
Multiplication

• These statistics are from the note of 
Prof Srini Devadas from MIT. [2]

• A “cycle” is technically a pulse 
synchronized by an internal oscillator, 
but for our purposes, they're a basic unit 
that helps understand a CPU's speed.

Name of Operation Latency for 
CPU

64 Bits Integer 
Addition

1 cycle

64 Bits Integer 
Multiplication

20 cycles
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Accelerate Calculation

• As shown in the previous slides, the calculation process can be accelerated if we can use 
additions to substitute the multiplications.

• For example:

• 𝑎2  −  𝑏2 = 𝑎 ×  𝑎 − 𝑏 ×  𝑏 (2 multiplications and 1 addition, i.e., 41 cycles)

• 𝑎2  −  𝑏2 = 𝑎 + 𝑏  ×  (𝑎 − 𝑏) (1 multiplication and 2 addition, i.e., 22 cycles)

• Actually, the two methods above are mathematically equivalent. However, as computer 
scientists, we prefer the second one since it use less multiplications.
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Bring This Idea to Matrix Multiplication

• 𝑚1 =  𝑎1 ∙ 𝑏1

• 𝑚2 =  𝑎1 ∙ 𝑏2

• 𝑚3 =  𝑎2 ∙ 𝑏3

• 𝑚4 =  𝑎2 ∙ 𝑏4

• 𝑚5 =  𝑎3 ∙ 𝑏1

• 𝑚6 =  𝑎3 ∙ 𝑏2

• 𝑚7 =  𝑎4 ∙ 𝑏3

• 𝑚8 =  𝑎4 ∙ 𝑏4

• 𝑐1 =  𝑚1 +  𝑚3

• 𝑐2 =  𝑚2 +  𝑚4

• 𝑐3 =  𝑚5 +  𝑚7

• 𝑐4 =  𝑚6 +  𝑚8

• 𝑚1 =  (𝑎1 + 𝑎4)  ∙ (𝑏1 + 𝑏4)

• 𝑚2 = (𝑎3 + 𝑎4)  ∙ 𝑏1

• 𝑚3 =  𝑎1 ∙ (𝑏2 −  𝑏4)

• 𝑚4 = 𝑎4 ∙ (−𝑏1 + 𝑏3)

• 𝑚5 = (𝑎1 + 𝑎2)  ∙ 𝑏4

• 𝑚6 = (−𝑎1 + 𝑎3)  ∙ (𝑏1 + 𝑏2)

• 𝑚7 = (𝑎2 − 𝑎4)  ∙ (𝑏3 + 𝑏4)

• 𝑐1 =  𝑚1 +  𝑚4 − 𝑚5 +  𝑚7

• 𝑐2 =  𝑚3 +  𝑚5

• 𝑐3 =  𝑚2 +  𝑚4

• 𝑐4 =  𝑚1 −  𝑚2 + 𝑚3 +  𝑚6

𝑎1 𝑎2

𝑎3 𝑎4
∙

𝑏1 𝑏2

𝑏3 𝑏4
=

c1 𝑐2

𝑐3 𝑐4

Standard Algorithm: Strassen’s Algorithm: • Each m include 1 multiplication
• Standard Algorithm includes

8 multiplications and 4 additions.
That is 164 cycles.

• Strassen’s Algorithm includes 7
multiplications and 18 additions.
That is 158 cycles.

• We can save 6 cycles.
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Problem

• Even though the trick that uses additions instead of multiplications is a good way to 
accelerate calculation, it seems hard for us to discover a new one.

•  Despite decades of research following Strassen’s breakthrough, larger versions of this 
problem have remained unsolved – to the extent that it’s not known how efficiently it’s 
possible to multiply two matrices that are as small as 3x3. [3]

• Is there a way to reformulate the problem of matrices multiplication algorithm 
discovery such that existing tools are helpful?

• As we mentioned, in the general case, when multiplying two matrices with dimensions 
𝑄 × 𝑅 and 𝑅 × 𝑃, we need  𝑄 × 𝑅 × 𝑃 multiplications. 𝑄 × 𝑃 is the dimension of the 
result matrix. We can do nothing about it. 

• Therefore, if the number of multiplications used to calculate the inner product can be 
minimized (it might be smaller than the value of R), we can achieve our goal! 
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Contribution 
of This Work

• In all cases, AlphaTensor discovers algorithms that 
match or improve over the known state-of-the-art
algorithm.
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Mathematics Behind 
Matrix Multiplication
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Transform Matrices 
Multiplication to 3D Tensor

• Τ2 ≐
𝑎1 𝑎2

𝑎3 𝑎4
∙

𝑏1 𝑏2

𝑏3 𝑏4
=

c1 𝑐2

𝑐3 𝑐4

• Tensor Τ2representing the 
multiplication of two 2 × 2 
matrices. Tensor entries equal to 1 
are depicted in purple, and 0 

entries are semi-transparent. 

• The tensor specifies which entries 
from the input matrices to read, 
and where to write the result. For 
example, as c1 = a1b1 + a2b3, tensor 
entries located at (a1, b1, c1) and 
(a2, b3, c1) are set to 1. 
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a

b

c

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

𝑎1 𝑎2 𝑎3 𝑎4

𝑏1

𝑏2
𝑏3
𝑏4

𝑐1 𝑐2 𝑐3 𝑐4 𝑐1 𝑐2 𝑐3 𝑐4 𝑐1 𝑐2 𝑐3 𝑐4 𝑐1 𝑐2 𝑐3 𝑐4

Dimension a

Dimension c

Dimension b



Transform Matrices Multiplication to 3D Tensor

• As we see in the previous slide, the multiplication of two 2 × 2 matrices can be rewritten 
to a 3D tensor with 4 × 4 × 4.

• In general, for multiplication of two n × n matrices, it can be rewritten to a 3D tensor 
with n2 × n2 × n2.

• More generally, for the multiplication of two matrices with the dimension of n × m and m 
× p, it can be rewritten to a 3D tensor with (n × m) × (m × p) × (n × p).

• For simplicity, we would use the case of multiplication of two n × n matrices. The 
corresponding 3D tensor with n2 × n2 × n2 is denoted as Τ𝑛.

14



Recap Knowledge from Linear Algebra Course

• In linear algebra, the rank of a matrix A is the dimension of the vector space generated 
(or spanned) by its columns. This corresponds to the maximal number of linearly 
independent columns of A. [4]

• Similarly, the rank of a 3D tensor is the dimension of the matrix space generated (or spanned) by 
its ”layers”.

• The outer product u ⊗ v is equivalent to a matrix multiplication u ∙ vT, provided that u is a m × 1 
and v is a n × 1 vector. [4]

• If 𝑢 =

𝑢1

𝑢2

𝑢3

𝑢4

 and v =

𝑣1

𝑣2

𝑣3

, we have u ⊗ v = 

𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3

𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3

𝑢3𝑣1 𝑢3𝑣2 𝑢3𝑣3

𝑢4𝑣1 𝑢4𝑣2 𝑢4𝑣3
15

1 0
0 1

−1 0
0 −1

1 0
0 1

0 1
1 0

1 0
0 1

0 0
0 0

Rank 1 Rank 1 Rank 2



Decomposition of the 3D Tensor

• THEOREM: If we can decompose 𝜯𝒏 into a sum of R rank-one terms, there exists an algorithm to 
calculate the multiplication of two n × n matrices with R multiplications.

• In other words, an algorithm to calculate the multiplication of two n × n matrices can be 
rewritten in the form of a sum of R rank-one terms (a decomposition).

• By decomposition of 𝛵𝑛 into a sum of R rank-one terms, we mean 

Τ𝑛 = 

𝑟=1

𝑅

𝑢(𝑟)  ⊗ 𝑣 𝑟  ⊗ 𝑤(𝑟)

• ⊗ is the operation of the outer product.

• u, v, w are three matrices

• 𝑢(𝑟), 𝑣 𝑟 , 𝑤(𝑟) are the r-th column of the u, v, w respectively, actually three vectors.

• 𝑢(𝑟)  ⊗ 𝑣 𝑟  ⊗ 𝑤(𝑟) is a rank-one term, that is the outer product of 𝑢(𝑟), 𝑣 𝑟 , 𝑤(𝑟) 

• I will give an example to illustrate this part in the following three slides.
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How to translate Strassen’s algorithm to a Tensor 
Decomposition

17

• 𝑚1 =  (𝑎1 + 𝑎4)  ∙ (𝑏1 + 𝑏4)

• 𝑚2 = (𝑎3 + 𝑎4)  ∙ 𝑏1

• 𝑚3 =  𝑎1 ∙ (𝑏2 −  𝑏4)

• 𝑚4 = 𝑎4 ∙ (−𝑏1 + 𝑏3)

• 𝑚5 = (𝑎1 + 𝑎2)  ∙ 𝑏4

• 𝑚6 = (−𝑎1 + 𝑎3)  ∙ (𝑏1 + 𝑏2)

• 𝑚7 = (𝑎2 − 𝑎4)  ∙ (𝑏3 + 𝑏4)

• 𝑐1 =  𝑚1 +  𝑚4 − 𝑚5 +  𝑚7

• 𝑐2 =  𝑚3 +  𝑚5

• 𝑐3 =  𝑚2 +  𝑚4

• 𝑐4 =  𝑚1 −  𝑚2 + 𝑚3 +  𝑚6



𝑟=1

7

𝑢(𝑟)  ⊗ 𝑣 𝑟  ⊗ 𝑤(𝑟)

That is to show there exists such u, v, and w!



How?
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Strassen’s Algorithm:
• How to comprehend this?
• m1 = (a1 + a4)(b1 + b4)
• m1 = ([1, 0, 0, 1] · [a1, a2, a3, a4])([1, 0, 0, 1] · [b1, b2, b3, b4])
• m1 = (u(1) · [a1, a2, a3, a4])(v(1) · [b1, b2, b3, b4])

• c1 = [1, 0, 0, 1, -1, 0, 1] · [m1, m2, m3, m4, m5, m6, m7]

• c1 = m1 + m4 - m5 + m7

• Let us verify this u, v, and w work well in the following two 
slides.

a2

a1

a3

a4

b2

b1

b3

b4

c2

c1

c3

c4

m1 m2 m3 m4 m5 m6 m7

u(1)

v(1)



How to calculate 𝑢(𝑟)  ⊗ 𝑣 𝑟  ⊗ 𝑤(𝑟) 

• 𝑢(1)  ⊗  𝑣 1  = 1, 0, 0, 1 ⊗ 1, 0, 0, 1

• 𝑢(1)  ⊗  𝑣 1  = 

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

•

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⊗ w(1) = 

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⊗[1, 0, 0, 1]
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a2

a1

a3

a4

b2

b1

b3

b4

c2

c1

c3

c4

m1 m2 m3 m4 m5 m6 m7

u(1)

v(1)

w(1)

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



Calculate 
σ𝑟=1

𝑅 𝑢(𝑟)  ⊗  𝑣 𝑟  ⊗  𝑤(𝑟)
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u(1) u(2) u(3) u(4) u(5) u(6) u(7)

v(1) v(2) v(3) v(4) v(5) v(6) v(7)

w(1) w(2) w(3) w(4) w(5) w(6) w(7)

𝑢(1)  ⊗ 𝑣 1  ⊗ 𝑤(1)

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

𝑢(2)  ⊗ 𝑣 2  ⊗ 𝑤(2)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

𝑢(3)  ⊗ 𝑣 3  ⊗ 𝑤(3)

0 0 0 0
0 1 0 1
0 0 0 0
0 −1 0 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝑢(4)  ⊗ 𝑣 4  ⊗ 𝑤(4)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−1 0 −1 0
0 0 0 0
1 0 1 0
0 0 0 0

𝑢(5)  ⊗ 𝑣 5  ⊗ 𝑤(5)

0 0 0 0
0 0 0 0
0 0 0 0

−1 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

−1 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝑢(6)  ⊗ 𝑣 6  ⊗ 𝑤(6)

0 0 0 −1
0 0 0 −1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝑢(7)  ⊗ 𝑣 7  ⊗ 𝑤(7)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

−1 0 0 0
−1 0 0 0

+

+

+

+

+

+

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

σ𝑟=1
𝑅 𝑢(𝑟)  ⊗  𝑣 𝑟  ⊗  𝑤(𝑟) =



Decomposition of the 3D Tensor

• σ𝑟=1
𝑅 𝑢(𝑟)  ⊗  𝑣 𝑟  ⊗  𝑤(𝑟) =

• This example shows that Τ𝑛 = σ𝑟=1
𝑅 𝑢(𝑟)  ⊗  𝑣 𝑟  ⊗  𝑤(𝑟)

• This example also shows that an algorithm can be translated to a tensor decomposition.

• If we can decompose 𝜯𝒏 into a sum of R rank-one terms, there exists an algorithm to calculate the 
multiplication of two n × n matrices with R multiplications.

• Finding a new tensor decomposition is equivalent to finding a new matrix multiplication algorithm

• Thus, our goal is to find the decomposition with minimum R.
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1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



Tensor Game
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Tensor Game

• If we can formulate the decomposition process to a single-player game, we can take advantage of the 
state of arts reinforcement algorithm!

• How to change the process of decomposition to a game?

• The state at timestep t is 𝑆𝑡.

• The initial state is 𝑆0 =  Τ𝑛.

• If x and y are both nonzero vectors, then the outer product matrix 𝑥 ∙ 𝑦Τ always has matrix rank 1.

• An action at timestep t is 𝑎𝑡 = (𝑢 𝑡 , 𝑣 𝑡 , 𝑤(𝑡)). We can get a rank-one term by taking the outer 
product of an action. 𝑢 𝑡 , 𝑣 𝑡 , 𝑤(𝑡) are randomly generated and should be non-zero.

• An update of the state of the game is 𝑆𝑡 =  𝑆𝑡−1  −  𝑢(𝑡)  ⊗  𝑣 𝑡  ⊗  𝑤(𝑡)

• When 𝑆𝑡 = 0, we achieve the final state. 0 = Τ𝑛 − σ𝑟=1
𝑅 𝑢(𝑟)  ⊗  𝑣 𝑟  ⊗  𝑤(𝑟)

• Obviously, the 0 here is a 3D tensor where all entries are zero.

• The reward of each step is -1. (Thus, to achieve higher return, we need to minimize the number of step, 
i.e., minimize R).
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Experiment
• After formulating the single-player game, we could 

leverage the power of reinforcement learning. 

• In this paper, the authors used similar techniques 
to AlphaZero (a.k.a. AlphaGo 2)[5]
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Experiment 
Results

• Column (n, m, p) refers to the problem of 
multiplying n × m with m × p matrices. 

• The complexity is measured by the 
number of scalar multiplications (or 
equivalently, the number of terms in the 
decomposition of the tensor). 

• ‘Best rank known’ refers to the best 
known upper bound on the tensor rank 
(before this paper), whereas ‘AlphaTensor 
rank’ reports the rank upper bounds 
obtained with AlphaTensor, in modular 
arithmetic (ℤ2) and standard arithmetic. 
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Conclusion

• Contribution:

• In all cases, AlphaTensor discovers algorithms that match or improve over the known 
state-of-the-art.

• Questions on This Work:

• Reformulating a problem to a single-player game is not general.
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Discussion and My Thoughts

• For two 5 × 5 matrices multiplication in ℤ2, Manuel 
Kauers and Jakob Moosbauer of Johannes Kepler 
University published a paper claiming they have 
reduced that count by one, down to 95 multiplications. 
[6]

• This means that AlphaTensor can guide the intuition of 
mathematicians, which coincides with the idea of 
another paper “Advancing mathematics by guiding 
human intuition with AI” I presented last time. This 
paper is also published by DeepMind on Nature.

• Even though the algorithms of reinforcement learning 
have not been improved a lot over the past five years, 
they can still make huge contribution if you can 
formulate your problem to a single-player game.
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Thanks

ANY QUESTIONS ABOUT THE 
PAPER?

ANY COMMENTS AND FEEDBACK 
FOR MY PRESENTATION?
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