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Theory of Language Models

e To design numerous, controlled experiments AND probe into the

network, to statistically uncover the mechanisms behind how diverse
Al tasks are being accomplished via pretraining/fine-tuning.

math

“2-layer transformer”

L er

| 6 f

LA

To design numerous, controlled experiments AND
probe into the network, to statistically uncover
the mechanisms behind how diverse Al tasks are
being accomplished via pretraining / finetuning

“physics”

controlled experiments
(pretrain + finetune data)
repeatable experiments
(try diff configs)
(GPT2 < 1B params)

individual Al tasks
probing



Knowledge Storage and Extraction



Interesting Observations

Was Barak Obama born in an even day?

No, B

Obama was born on an even day.

Kk Obamalwas born on August 4, 1961,|August 4this an even day. So, yes, ck

Was Donald Trump born in an odd year?

Was Mitch McConnell born in an odd year?

0, contrary to

Yesxh McConnell wa{ born on February 20, 1942.]1942 is an even year,

the question, he was not born in an odd year but rather in an even year. f{

W
W
}

Was Barak Obama born in an odd month?

Yes Y ack Obama[.ms: born on August 4, Mﬁi August is the 8th month of the y|
anevennhumber, so technically, he was not born in an odd mont

Was Nancy Pelosi born in an even month?

Was Donald Trump born in an odd month?

ijj Trump wagborn on June 14, 1946, June is the 6th month of the year, which is an
e nuier, but if you're referring to the fact that June falls among the odd-numbered

months (January, March, May, etc.), then yes, he was born in an odd month in that sequence.
Do you know what odd month means?

Yes, | apologize for the oversight. An "odd month" refers to a month with an odd number. In
this context, January (1), March (3), May (5), July (7), September (9), and November (11) are

considered odd months. June, being the 6th month, is even. So, Donald Trum ot born

in an odd month.

Yes, cy Pelos‘ was born on March 26, 1“-"-(.1.'v13rch is the third month of the year, which is

an odd month. So, Nancy Pelosi was not born in an even month.




Interesting Observations

Was Mitch McConnell born earlier than Joe Biden?

h McConnell was not born earlier than Joe BidenlJoe Biden was born on November I

20,1942, while Mitch McConnell was born on February 20, 1942'30. Mitch McConnell is

actually a few months older than Joe Biden.

So who was born earlier?

Apologies for the confusion in my previous response. Mitch McConnell was born on OO

February 20, 1942, which means he was indeed born earlier than Joe Biden, who was born
November 20, 1942, So, Mitch McConnell was born earlier than Joe Biden by a few month:

Was Bill Clinton born earlier than George W. Bush?

Clinton was born earlier than§George W. Bush. Bill Clinton was born on August 19,
Ithough both were born in the same

6, while George W. Bush was born on July 6, 1946,

year, George W. Bush was born a little over a month before Bill Clinton.

So was Bill Clinton born earlier than George W. Bush?

Oops, my apologies for the oversight. No, Bill Clinton was not born earlier than George W.
Bush. George W. Bush was born on July 6, 1946, and Bil born on August 19, 1946.
So, George W. Bush was born earlier than Bill Clinton.

Answer me short, who was born earlier, Nancy Pelosi or Mitch McConnell?

Mitch McConnell was DOMEI He was born on February 20, 1942, while Nancy Pelosi w. 1»]

born arch 26 \;«..:_T

So who was born earller?

Apologies for the oversight. Nancy Pelosi was bor on March 26, 1940, compared to

Mitch McConnell's birthdate of February 20, 194;

Yes or not, was Joe Biden born earlier than Nancy Pelosi?

born earlier than Nancy Pelosi. Joe Biden was born on November 20,
Pelosi was born on March 26, 1940.

Yes, Joe Bidi
1942, whileYan:




Knowledge Design (Datasets Construction)

0. First, middle, and last names from 400, 400, and 1000 choices
1. Birth years range from 1900 to 2099, months 1-12, days 1-28.
2. Birth cities from 200 US cities

3. Universities from a list of 300 US institutions.

4. Majors are from 100 college disciplines

5. Employers are chosen from 263 companies

6. Work location uniquely determined by employer

o NI Biography Synthetic Dataset

October 2, 1996
Massachusetts Institute of
Technology Communications
Meta Platforms | ‘

JJle1aNeFI-=IM Biography Real Dataset

Meta Platforms
MIT Communications 2nd October 1996
Menlo Park in California

rewritten by LLaMA 1 / LIMA l



Knowledge Extraction (Task Definition)
-

Y ) n on October 2, 1996. ¢ nt h 1 Princeton, NJ. !
| MIT. She comple ducation w \

Communications nal role at Meta Platforms. S v Menlo Park, CA
Qabrina Eugeo Zuberg ca ‘ ; [...100k biography entries] /

What is the birth date of A ) ; What is the birth city o \ ( . \

Answer: October 2, 1996. Answer: Princeton, NJ

Which university : stu What major did

Answer: MIT. Answer: Communications.

Which company dic r wol : Where did A Forger work

Answer: Meta Platforms. Answer: Menlo Park, CA.

\_ [..QAs on 50k individuals] _/

separate train/test sets

1

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? What is the birth city of Sabrina Eugeo Zuberg?
Which university did Sabrina Eugeo Zuberg study? What major did Sabrina Eugeo Zuberg study?
Which company did Sabrina Eugeo Zuberg work for? Where did Sabrina Eugeo Zuberg work?




MIX

raining

bioS single 775 871 857 818 |

01 02 03 04 06 08 09
QAr - ratio of QA data in mix training

bioR single RPN R 714 787 78.4 |

01 02 03 04 06 08 09
QAr - ratio of QA data in mix training

&‘

What is the birth date
Which university
Which company

What major
Where did

[...QAs on remaining 50k]

work

baseline 124
bioS single 186.6
bioR single

o~ 63.@ c\'d \)0\

2
W€

0 C-
IR A wr\\*;,\*“ Wwh

& o, o

Using GPT2 ~100M/300M params (with rotary emb)

Using QAr=0.8

(a) bioS (b) bioR
g ) Y
J N
October 2, 1996 NJ
MIT.
Communications Meta Platforms Menlo Park, CA X (1-QAF)
\Sabrina Eugeo Zuberg [...100k biography entries]
A <
What is the birth date of Vhat is the X QAI’
Answer: October 2, 1996. \n ‘ ( \
[...QAs on 50k individuals]




Mix Training

Call them BIO accuracy (knowledge storage / memorization)

A e

'I Call them QA accuracy (knowledge extraction)

x (1-QAr)

BIO

Call them in-dist, or P,,;,

Call them out-dist, or P,

in-dist out-dist

first-token /
whole-attribute

first-token /
whole-attribute

first-token /
whole-attribute

first-token /
whole-attribute




M IX Training_

q bioS data out-dist [...50k biography entries] x 0.1

[...50k biography entries] X (0.1

Which university ¢
Which company c

[...QAs on rem
What is the birth date of Sab

aining 50k]

bioS data in-dist

K QAtrain

[...QAs on 50k individuals] X 0.8 y

=== BIO in-dist first-token acc
—— QA in-dist first-token acc
-== BIO out-dist first-token acc
= QA out-dist first-token acc
- QA out-dist generation acc

0

2'0 4'0 6'0 B'O 160 150 1;0 1&0
training epochs

(b) training on bioS dataset

90 4
804
70 4
B I
!
I
50 4 ]
I
a4 i
I
30 4 'l === BIO in-dist first-token acc
20 —— QA in-dist first-token acc
-== BIO out-dist first-token acc
10 — QA out-dist first-token acc
01 - QA out-dist generation acc
0 50 100 150 200 250 300

training epochs

(c) training on biOR dataset

1. The model uses the in-dist QA data to
encode knowledge.

2. The model then memorizes the in-dist BIO
data.

3. Align the knowledge with BIO data and
learn out-dist BIO data.

4. Increase QA out-dist accuracy.

Takeawayl:

Doesn’t reflect the natural progression of
human knowledge. This is not only for
QAr=0.8 but also obverse in LLaMA 1.



Fine-Tuning

bioS data

October 2, 1996 ) Princeton, NJ
MIT \
. . Communications Meta Platforms Menlo Park, CA
* Pretrain on bioS data
Sabrina Eugeo Zuberg [...100k biography entries]

* Fine-tune on QA train p an,
What is the birth date of What is the birth city \
Answer: October 2, 1996. Answer: Princeton, NJ

* TeSt On QA teSt Which university What major

Answer: MIT. Answer: Communications.
Which company ' Where did ! work
Answer: Meta Platforms. Answer: Menlo Park, CA.

\ [...QAs on 50k individuals] /

separate train/test sets

1

[...QAs on remaining 50k]

What is the birth date of Sabrina Eugeo Zuberg? What is the birth city of Sabrina Eugeo Zuberg?
Which university did Sabrina Eugeo Zuberg study? What major did Sabrina Eugeo Zuberg study?
Which company did Sabrina Eugeo Zuberg work for? Where did Sabrina Eugeo Zuberg work?




Fine-Tuning

QA..in accuracy QA accuracy

éé train all f:‘ train all

© 32 (28.8) 9.2 (295 9.4  (306) 9.5 (322) 9.5  (40.7) 9.1 © 324 (286) 9.6 (311) 9.3  (329) 9.5 (367) 9.7 (435) 9.5  (66.7) 9.9
> 16 (249) 9.9 (255 10.0 (261) 9.8 (27.3) 9.7 | (332) 8.8 > 164 21.7) 9.3 (236) 9.4 (245 9.7 (263) 9.8  (303)10.1 (512) 9.9
o 8 (233)10.1 (23.7)10.5 (242) 9.9  (250) 9.4  (29.8) 9.0 S 84 (188) 9.4 (208) 9.9 (215 9.9  (227)10.2 (249) 9.7  (425) 9.8
b 4 (22.2)10.1 (22.4) 9.9  (22.8) 9.7 (23.8) 9.4 | (27.8) 8.6 g (19.4)10.2 (20.2)10.3 (21.0) 10.0 (22.8) 9.8  (37.7) 9.7
S > 212) 9.7 (21.5) 9.7  (21.9) 9.6  (22.6) 9.0 S

(18.8) 10.0 (19.4) 10.0 (20.2) 10.2 (21.8) 9.7 (35.0) 9.0
0 (freeze) 16 32 64 128 train all 0 (freeze) 16 32 64 128
LoRA embedding rank LoRA embedding rank

T
train all

‘\ full finetune
(a) 124M model, pre-trained 540 passes on bioS (b) 302M model, pre-trained 1000 passes on bioR -~

Aol
' 4 .
. 4 LoRA finetune
< train all 1 £ trainall
© 324 (345 9.8  (40.4)10.0 (424)10.3 (46.5) 9.8  (54.9) 9.5 (78.4) 9.6 o 324 (36.1) 9.1  (405) 9.3  (43.0) 8.8 (486) 9.2  (56.8) 8.9  (84.1) 8.6 =
> 164 (272)10.0  (30.0)10.5 (31.1)10.5 (325)10.2 (37.2)10.1 (60.6) 9.8 > 164 (243) 9.8  (264) 9.0 (27.9) 9.2  (316) 9.4  (382) 9.0 | (69.6) 8.5
o 84 (233)10.3 (255 10.7 (26.1) 10.5 [JESENGIZN (298 10.2 (49.7) 9.6 S 8- (2000 9.1  (21.8) 9.6  (22.9) 9.3  (24.7) 9.5  (29.2) 9.0 [(59:3
= 44 (214)10.4 (231)10.8 (236)10.6 (24.4)10.5 (26.4)10.3 (44.2) 9.6 44 (17.9) 8.8 (201) 9.4 (21.0)10.0 (222) 9.4  (25.3) 9.0
9 24 (20.0)10.4 (21.8)11.0 (222) 10.8 (23.1) 10.4 (40.7) 9.3 =

(19.0) 9.3 (19.8) 9.5 (21.0) 9.4 (23.4) 8.8

0 (freeze) 16 32 64 128
LoRA embedding rank

d) 682M model, pre-trained 1

0 (freeze) 16 32 64 128 train all

train all
LoRA embedding rank

Takeaway2:

Fine-tuning cannot help do knowledge
extraction if we did not pre-train the
model on it. In my humble opinion, it
means the storage of knowledge and
the extraction of knowledge are
independent to each other.

(c) 682M model, pre-trained 1350 passes on bio passes on bioR




\Sabrina Eugeo Zuberg came into this world on September 7, 1991...

mentorship and guidance from faculty members at MIT. She completed h

[ ]
D a ta A u g m e ntat I O n Communications. She had a professional role at Meta Platforms. She was ¢

~

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received

or education with a focus on

mployed in Menlo Park, CA.

[...100k biography entries] /

Multiplicity: create M distinct biographical entries per individual

e Anya Briar Forger came into this world on October 2, 1996. She originated from Princeton, NJ. She pursued advanced
coursework at MIT. She dedicated her studies to Communications. She developed her career at Meta Platforms. She

gained work experience in Menlo Park, CA.

Permutation: random permutations to the biography sentences (for P times)

e Anya Briar Forger originated from Princeton, NJ. She dedicated her studies to Communications. She gained work
experience in Menlo Park, CA. She developed her career at Meta Platforms. She came into this world on October 2,

1996. She pursued advanced coursework at MIT.

Fullname: replace pronouns and partial names with fullname

e Anya Briar Forger originated from Princeton, NJ. Anya Briar Forger dedicated her studies to Communications. Anya
Briar Forger gained work experience in Menlo Park, CA. Anya Briar Forger developed her career at Meta Platforms.
Anya Briar Forger came into this world on October 2, 1996. Anya Briar Forger pursued advanced coursework at MIT.



Data Augmentation

baseline : 0.0 0.5
bioS single . 6.3
bioS single + fullname

bioS single + permutel : 0.5 B33

bioS single + permute2
bioS single + permute5
bioS single + permutel + fullname 26.6 293
bioS single + permute2 + fullname
bioS single + permute5 + fullname 480.2

bioS multi2

bioS multi2 + fullname 484.0 100 97.7
bioS multi2 + permute 491.2 99.3 98.7
bioS multi2 + permute + fullname 496.1 100 98.8
bioS multi5 {41.0 100

bioS multi5 + fullname 182.4 100 98.6
bioS multi5 + permute 4196.6 100 99.0
bioS multi5 + permute + fullname - 96”2 100 98.7

0:3-1.0,04.-13.7
2.3 5408 1.1 13.8

14.1
2.4 BO5Ee 358 13.7

g9 97.6 913
89.8 96.7 |35 NE
S 98.1 19357 97.8

INUPIRERY Takeaway3:
88.4 96.1 91.9 PLRA The more augmentation we did
91.3 97.7 95.1 98.7 for pre-training dataset, the

99'6 97"9 93"7 99{0 better results we will have after

C e . N
<« o> 7 o\a QT b

o>

O @ o fine-tuning.

o>



Position-based Probing

Takeaway4:
If we don’t do the augmentation,
the knowledge can only be

m ] O] m] = OO
t t t

decoder layer (attention + MLP)

(5 .
4

OO COmm OO0
4

decoder layer (attention + MLP)

R

at MIT ... on Communications

*

at Meta Platforms

*

in Menlo Park

*

on October 2, 1996

*

in Princeton, NJ

extracted from the token just
before the knowledge. However,
if we do the data augmentation,
then all knowledge is extractable
from the earliest token.

feed a biographical entry as input to GPT2

baseline 37.0 37.0 3 40 40 40 148 148
bioS single 37.1 EiM 15.4 15.4
bioS single + fullname 99.9 28.2 31.3
bioS single + permutel 50.1 53.0 57.6 37.6 27.1 453 100
bioS single + permute2 67.8 77.3 847 919 . 100
bioS single + permute5 97.3 979 986 998 999 100
bioS single + permutel + fullname 59.1 B4.0 88.3 85.1 95.6 100
bioS single + permute2 + fullname 76.6 94.8 96.0 97.4 .2 98,8 99.6 100
bioS single + permutes + fullname 188.8 90.4 91.5 92.3 94.6 100 782 B39 1007980 98.0 983 98.7 99.0 100)99.9 100 100 100 100 100
bioS multi2 4100 99.6 99.3 39 218 100
bioS multi2 + fullname- 100 100 100 99.6 100 100 99.7 999 100 100 996 999 999 999 100 99.9
bioS multi2 + permute 4100 100 100 100 100 1007999 100 100 100 100 100§99.9 100 100 100 100 1007995 99.7 998 999 100 100)93.3 953 96.8 98.0 98.8 99.9|90.2 928 95.0 96.8 98.6 100
bioS multi2 + permute + fullname 499.9 100 100 100 100 100§ 100 100 100 100 100 100§ 100 999 100 100 100 100)999 100 100 100 100 100499.7 99.8 999 999 100 100J99.0 99.3 99.3 995 99.8 100
bioS multis {100 100 | 44.0 L2/l EERS EZXYE) 76.1 99.5 55 7.1 10.7 37.5 EER 13.8 100
bioS multis + fullname- 100 100 100 98.7 99.8 100 99.3 999 999 999 98.1 99.6 99.7 99.7 100 99.9
bioS multi5 + permute 100 100 100 100 100 100100 100 100 100 100 100§ 100 100 100 100 100 100100 100 100 100 100 100§99.9 999 999 100 100 100 499.8 99.8 99.9 100 100 100
bioS multi5 + permute + fullname 4 100 100 100 100 100 100§ 100 999 999 100 100 100§ 100 100 100 100 100 100§100 100 100 100 100 1004999 100 999 100 100 100499.7 99.8 99.8 999 999 100
. <. < 3, <. 3 a <. <, 2 4 35 a <. < > 4 3 2 <. < > 7. 3. 73 s g 4 <. N 4 2. < 4 4 N
60)0,)(:: oo(ééo)oo(éé’?)oo%é’))oo(/j’})ob(éé(}a (}e':'_’ 6(",&' 6(“,(} éog 6(‘%; 'f//;/ ‘//;/b C’})}L % G % (6)}1.’ O)G/b, ‘9/6, 9)% . ) %@‘ O)o}b, O)% : 00&0)& O)d’o)@ (“,)e,))@ C,?so)@ (‘,)éo)& 0)9;))@ CC’{}, Q}(}’ Q\@, coé' c(\@' Q‘/é}



llustration of the P-probing

at Meta Platforms from MIT in Communications on
2nd OctobE 1996 in \ to Menlo Park in California
predict ¢ name [/ univ / major /b _date / [ c_city predict major / b_date / / c_city
predict / c_city | predict b_date / / c_city
|—>predict univ / major / b_date / / c_city > predict ¢_city

Underscore prepositions are the special token positions where we prob. The task is to predict all attributes
following these positions. Given the attribute ordering, there can be up to 6 x 6 = 36 tasks across all data.



Query-based Probing

baseline

bioS single

bioS single

bioS single + permutel
bioS single + permute2
bioS single + permute5

bioS single + permutel + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname 480.2

bioS multi2
bioS multi2
bioS multi2 + permute
bioS multi2 + permute
bioS multi5
bioS multi5
bioS multi5 + permute
bioS multi5 + permute

+ fullname-

+ fullname A

0.0 05 03 1.0 0.4 13.7
63 23 40 1.1 13.8
14.1

05 33 24 50 35 13.7

26.1 5.2 14.0
100 97.7 89.5 97.6 91.3 EE¥E]
99.3 98.7 89.8 96.7 83.3 83.5
100 98.8 91.3 98.1 93.7 97.8

100 10.2 13.8
100 98.6 88.4 96.1 91.9 pieR:]

100 99.091.3 97.7 95.1 98.7
100 98.7 90.6 97.9 93.7 99.0

83 25 37.0 40 15 14.8
19 375 31 0.2 131
28.9

45.119.6 0.7 13.0
100 100 99.7 99.7 99.8

99.9 99.9 99.6 99.4 93.9 90.2
99.7 100 100 99.9 99.9 99.4

100
100 100 98.3 99.4 98.5

100 100 99.9 100 99.9 99.8
100 100 99.8 100 100 99.8

linear classifier to predict 6 possible knowledges

O OO0 =
4

decoder layer (attention + MLP)

decoder layer (attention + MLP)
- — A

<start> Anya Briar Forgér <end>

Takeawayb:

PSR  |f \ve do the data augmentation,
s all knowledge is extractable from

53 5 the person’s name. In other
CESEERIPPICEEY] Words, “attribute directly saved
to the person’s name” is a crucial
factor for effective knowledge
extraction.

149148 0.7 11.8

88.1 99.4 99.1

94.9 99.6 99.7

’o‘e <,\'°l \)\\‘ 3 “\e, o“*
a>° b

©- QP* ?‘C O.P‘/

1%

«°
PP Y % &\“’ o (& res &\‘6

ﬂ‘“ o 00\ \ d‘e o“’

C .-

Qr

92.0 99.9 99.8



Do we have to augment anyone?

pretrain

. [100k minority biography entries,
[ bioS data non-augmented]

e.g bioS single+permute

. [100k celebrity biography entries,
[ bioS data fully-augmented]

e.g bioS multi5+permute

Similar to real cases, celebrity people
will have many different descriptions of
their biography on the Internet. The
minority people only have a few or only
one description.

baseline
bioS single + permutel
bioS single + permutel + CEL

bioR single 10.0
bioR single + wiki 7.3
bioR single + CEL 76.3 853 829 794
< e NS S ) S|
?C 3¢ v \ ¥ A& o)

Takeaway6:

Celebrities help minorities. If we simply do a permutation, that is not enough.
However, if we include the celebrity data in the pre-training phase, it will
boost the accuracy from 4.4% to 86.8%. Namely, we don’t have to augment all
data. Only parts of them will be extremely helpful.



What about BERT? Bidirectional Model

[...QAs on remaining 50k]
. What is the birth dat
SlordeFie 0  [...100k biography entries] - O/ W [...QAs on 50k individuals] ‘ Whi }\'Sum;ee] jriw ate [??;:ignré::lg]mask] [mask]
Which company [mask] [mask]

N [EN N BN BN BN N B B N . & O LIl Tl ]

encoder layer (attention + MLP)

encoder layer (attention + MLP)

[mask] 2, 1996 Princeton [mask] MIT [mask] Meta Platforms [mask] Park

baseline 00 05 03 10 04 2.7 0.5 0.4 14.8 0. EN
biaS single B 263 10.7 3.1 3.7 33 1.9 12.9 0. 11.8
biaS single + fullname R 28.4 29.2 4.5 12.2 7.5 33 13.2 6. 12.2
bioS single + permutel + fullname 11.2 7.4 5.4 3.8 13.3 2. 12.3
bioS single + permute2 + fullname 9.4 22.4 24.4 5.2 13.2 13. 11.9
bioS single + permute5 + fullname 4.4 24.5 241 58 13.5 12. 12.3
bioS single + permutel 2.3 3.1 3.0 1.6 13.5 0. 12.2
bioS single + permute2 4.2 3.1 2.1 1.9 131 0. 12.1
bioS single + permute5 3.8 35 2.4 2.5 13.1 0. 12.0
bioS multi2 3.6 6.9 8.1 2.7 12.9 3. 12.1
bieS multi2 + fullname . 26.8 5.2 4.9 13.0 19. 12.0
bioS multi2 + permute + fullname . 2313 9.3 7.4 13.0 12.3
bioS multi2 + permute . 9 128 5.1 2.7 13.2 12.4
bioS multis . 223 4.0 3.0 13.4 11.9
bioS multis + fullname . 252 5.1 4.4 i 11.8
bioS multi5 + permute + fullname f 78.0 b 5.5 3.4 12.2
bioS multi5 + permute . E 15.6 4.1 2.5

e ST e . o
@ a0t e S I

b @ oo
0 £ W S o 0 o @@ 05 & SR CAN

e® 0 Wk kT ok [N S e® Vo ah Ql s o b & > (S~ (IS e
T W W ok W OP.{K‘ ob" 7 Q (LA S Q P o oy o I o oo




What about BERT? Bidirectional Model

* The only useful augmentation is to change pronouns to full names.

* This makes sense because, during the masked modelling, each word has the same
chance to be masked. They will learn to associate with the most related unmasked
words, preferably those that are adjacent. So, if we have full names everywhere,
then the model will store knowledge in a better way for better extraction.

* For example, birthdate has higher accuracy. This is because the month, day, and
year are independent of each other. We cannot infer the birthday from the birth

month or birth year, so the model must store this knowledge in the person’s name,
not the word adjacent to it.

* In contrast, the company name has very low accuracy. This is because the company
names always have multiple words, and they will associate with each other.
Moreover, majors will mainly have a single word, so they will be stored in the
person’s name.

Takeaway7:

The bidirectional model cannot do this as well. Whether the knowledge is stored on the person’s name (pre-
train) == QA test accuracy (fine-tune).



Knowledge Manipulation



Partial and Dual Retrieval
\

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received
mentorship and guidance from faculty members at MIT. She completed her education with a focus on
kCommunications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA. )

\
What is the birth date of Anya Briar Forger? What is the birth city of Anya Briar Forger?
Which university did Anya Briar Forger study? What major did Anya Briar Forger study?
\Which company did Anya Briar Forger work for? Where did Anya Briar Forger work? )
partial retrieval N
What is the birth day in the month for Anya Briar Forger? Answer: 2
What is the birth year for Anya Briar Forger? Answer: 1996 -
.

dual retrieval

1. Where was Anya Briar F born and which company did this this person work for? Princeton, NJ; Meta Platforms.




Partia

baseline

bioS single

bioS single + fullname
bioS single + permutel

bioS single + permute2

bioS single + permute5

bioS single + permutel + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname
bioS multi2

bioS multi2 + fullname
bioS multi2 + permute

bioS multi2 + permute + fullname
bioS multi5

bioS multi5 + fullname
bioS multi5 + permute

bioS multi5 + permute + fullname

ob ab

If we only extract bi

| and Dual Retrieval

13.7
13.8
14.1

13.7

90.5 97.7

70.1 65.0
{824 687
{90.6 [47.1
1976 77.1
195.7 465
96.2 67.2
85.0

97.4 68.0
82.3
97.6 76.7

<
\06@\; o N e
o

Q™ ot

rthdays, the model can

do it very well. If we only extract birth years, Takeaway8:

the model struggles with it. This means the

birthdays and birth

months are hint words

for getting birth years correctly.

If we ask the model to predict the company
name first and then the company city, it can
do very well. Inversely, if we ask the model to
predict the company city first and then the
company name, then it will do very badly.
(As we didn’t do permutation in this case,
and the company city is determined by the
company name.)

Evidence of the necessity of the chain of thoughts.



Knowledge Classification and Comparison

knowledge classification

Was Anva Briar Forger born in an even month? Answer: Yes.
What is Anya Briar Forger’s birth month mod 6? Answer: 4.
What is Anya Briar Forger’s birth month in numerals? Answer: 10.

-

knowledge comparison

Was Anya Briar Forger born in a month in a year later than Sabrina tugeo Zuberg? Answer: [Yes/No].
What is Anya Briar Froger’s birth month minus Sabrina Eugeo Zuberg’s birth month? Answer: [-11..11].




Knowledge Classification and Comparison

pretrained model QA finetuned model Correlation between month tokens (embedding layer)

1.00
baseline anec trained with hint anec trained with hint JS—y .
‘ . : February 0.75

field task Indviduals test acc (\::En:srs hint) (twefit hint) hint acc test acc (\.Eﬁtsr: hint) (:ve,%t Aint) hint acc March .- s
birthmonth classify %2 (2.5k) 60.4 65.2 64.5 61.9 65.2 69.1 April . e
birthmanth classify %2 (5k) 67.3 87.3 72.7 80.3 68.0 89.5 72.8 83.9 May . L 0.25 g
birthmonth classify %2 (10k) 94.2 91.0 95.0 92.8 <
birthmonth  classify %2 (25k) 98.6 91.1 97.8 87.1 98.8 90.9 93.4 June . | 0.00 8
birthmonth  classify %2 (50k) [ 953 || 995 97.5 99.2 96.3 99.7 97.5 99.5 July §
birthmonth  classify %12 B=1: 31.5 53.7 61.5 53.8 64.0 August | 025 g
birthmonth  classify %12 (5k) . 79.0 79.0 80.3 82.5 82.4 S
birthmonth  classify %12 (10k) 91.6 92.0 86.8 92.0 935 94.7 91.2 94.7 S a0 =
birthmonth  classify %12 (25k) 97.9 98.5 96.8 98.5 98.9 99.2 98.3 99.2 October .
birthmonth  classify %12 (50Kk) 99.4 995 99.4 99.5 99.6 99.8 99.7 99.8 November . o5
birthmonth ranking (2.5k) 53.7 65.4 59.6 57.3 65.5 57.6 449
birthmonth  ranking (5k) 59.2 75.5 63.4 62.5 75.1 R 62.6 e s N —_—
birthmonth ranking (10k) 65.4 67.0 65.9 88.9 66.3 83.9 S AL AN EN & S L
birthmonth  ranking (25Kk) 75.6 96.7 75.8 ‘ 97.4 72.5 96.3 Q«\"Z@*"b\*”‘ b i @6)&@%":@1&@0
birthmonth ranking (50k) 99.0 98.9 98.3 F s A

major classify %5 (10k) 23.6 86.4 241 22.8 89.6 239 87.9

maijor classify %5 (25k) 24.6 96.7 26.8 24.8 97.7 27.0 97.2

major classify %5 (50k) 31.6 99.3 34.2 30.0 99.5 33.9 994

oo Chedly W00 10K 10 301 . 345 _ 5.9 T 222 %1 | 1he model needs 50k data to get accuracy

major classify %100 (25k) 1.0 79.3 80.0 95.6 77.1 95.3 . ey .

major  classiy %100 (50) 1.0 \ ‘ 98.3 925 98.1 above 95%. However, in the traditional

major ranking (10k) 50.5 52.5 88.8 54.1 86.2 52.4 90.3 54.1 88.3 . .

major ranking (25K) 50.5 52.2 96.4 53.7 97.3 52.6 96.9 53.6 97.5 machine Iearnlng theorem, we only need

major ranking (50k) 50.5 53.9 99.6 55.0 99.5 53.6 99.4 55.0 99.3

major subtraction (10K) 1.0 1.1 21.6 1.1 825 1.0 23.2 1.1 843 100 data to get almost 100% accu racy.

major subtraction (25k) 1.0 1.1 89.1 1.2 96.7 1.2 84.7 1.2 97.0

major subtraction (50k) 1.0 1.1 98.4 1.2 99.3 1.1 97.3 1.2 99.0

A pre-trained model means fine-tuned on a normal QA dataset. A QA fine-tuned
model means fine-tuning on a classification/comparison QA dataset. This a
misleading notation to be honest.



Knowledge Classification and Comparison

knowledge classification

born in an even month? Answer: October; Yes.
birth month mod 6? Answer: October; 4.
birth month in numerals? Answer: October; 10.

knowledge comparison

born in a month in a year later than
’s birth month minus

? Answer: October, September; Yes.

’s birth month” Answer: October, September; 1.

field task infi\t'i'g:.lnals
birthmonth classify %2 (2.5k)
birthmonth classify %2 (5k)
birthmonth classify %2 (10k)
birthmonth classify %2 (25k)
birthmonth classify %2 (50k)
birthmonth classify %12 (2.5k)
birthmonth classify %12 (5k)
birthmonth classify %12 (10k)
birthmonth classify %12 (25k)
birthmonth classify %12 (50k)
birthmonth ranking (2.5k)
birthmonth ranking (5k)
birthmonth ranking (10k)
birthmonth ranking (25k)
birthmonth ranking (50k)
major classify %5 (10k)
major classify %5 (25k)
major classify %5 (50k)
major classify %100 (10k)
major classify %100 (25k)
major classify %100 (50k)
major ranking (10k)
major ranking (25k)
major ranking (50k)
major subtraction (10k)
major subtraction (25k)
major subtraction (50k)

baseline

pretrained model

QA finetuned model

;qu“ﬁgt trained with hint Vm'"h?:t trained with hint

test acc (\:ﬁﬁ ‘;f:t] (Ra’%t r?iﬁﬁ) hint acc test acc (:ﬁts; 2?;0 ‘:E.'Zt r?icnct) hint acc

60.4 6 64.5 61.9 6 69.1

6 80.3 68.0 89.5 8 83.9

94.2 91.0 95.0 92.8

98.6 91.1 97.8 98.8 90.9 98.4

95.3 99.5 97.5 99.2 96.3 99.7 97.5 99.5

61.5 8 64.0

79.0 79.0 80.3 82.5 82.4

91.6 92.0 86.8 92.0 93.5 94.7 91.2 94.7

97.9 98.5 96.8 98.5 98.9 99.2 98.3 99.2

99.4 99.5 99.4 99.5 99.6 99.8 99.7 99.8

65.4 9.6 44.2 b b 44.9

g 63.4 63.6 6 6 62.6

65.4 67.0 82.7 65.9 88.9 66 83.9

6 96.7 8 95.4 97.4 96.3

99.0 98.5 98.9 98.3

6 86.4 84.5 8 89.6 9 87.9

4.6 96.7 6.8 96.3 8 97.7 0 97.2

6 99.3 4 99.2 0.0 99.5 9 99.4

0 78.7 4.6 79.0 8.9 75.8 76.1

79.3 96.0 96.0 80.0 95.6 77.1 95.3

91.7 99.0 90.7 991 91.8 98.3 92.5 98.1

88.8 4 86.2 4 90.3 4 88.3

96.4 97.3 96.9 6 97.5

9 99.6 0 99.5 99.4 0 99.3

6 82.5 0 84.3

89.1 96.7 84.7 97.0

98.4 99.3 97.3 99.0

Takeaway9:

Even if the model is trained with the chain of
thoughts, during inference time, the chain of
thoughts is still required.

“what’s the birth date of <name> who is a <occupation> and was born in <city>?"
GPT4 accuracy: 99% (selected 4779 celebrities on Wikipedia)

IR ( Question: “Answer me yes or no concisely:
mod 2 , was this person born in an even month?”

GPT4 correct answer = 50.7%, incorrect answer = 48.5%, | don’t know = 0.7%

Question: “Answer me yes or no concisely: v
born in <cityl> born earlier than <name2> who was a <c pation2> and was born in <

GPT4 accuracy answer = 52.3% among individuals born in 1900~1910 bi TE ':jkt
GPT4 accuracy answer = 71.1% among individuals born in 1900~1950 N SAhe

GPT4 accuracy answer = 81.6% among all individuals

"

GPT4 is not capable of doing this task without
the chain of thoughts.



. _ ; [100k biography entries,
BIO pretrain (fully-augmented) ‘ I W ]

| n Ve rS e S e a rC h QA3 finetu ne (inverse sea rch) (0L [inverse search on 50k individuals]:

————

~

[inverse search on remaining 50k]
J

(.

knowledge inverse search \
1. Give me the [first/full] name of the person born on October 2, 19967 (bdate to first, bdate to full)
2. Give me the [first/full] name of the person born on October 2, 1996 in Princeton, NJ? (birth to first, birth to full)
3. Give me the [first/full] name of the person who studied Communications at MIT and worked
for Meta Platforms? (three to first, three to full)
4. Give me the [first/full] name of the person who studied Communications at MIT, was born in
Princeton, NJ, anc worked for Meta Platforms (four to first, four to full)
5. Give me the [first/full] name of the person who studied Communications at MIT, was born on
kOctober 2, 1996 in Princeton, NJ, and worked for Meta Platforms 2t Menlo Park, CA” (all to first, all to full) j

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received

mentorship and guidance from faculty members at MIT. She completed her education with a focus on
Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.




bio7 single

bio7 single + fullname
bio7 single + permutel

bio7 single + permute2

bio7 single + permute5

bio7 single + permutel + fullname
bio7 single + permute2 + fullname
bio7 single + permute5 + fullname
bio7 multi2

bio7 multi2 + fullname
bio7 multi2 + permute

bio7 multi2 + permute + fullname
bio7 multi5

bio7 multi5 + fullname
bio7 multi5 + permute

bio7 multi5 + permute + fullname
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The models are not able to do the inverse search.

Inverse search: “In <Pride and Prejudice>, what’s the sentence before: <sentence2>?”

Pride & Prejudice Sense & Sensibility Persuasion Northanger Abbey Emma Mansfield Park

; Forward search: “In <Pride and Prejudice>, what’s the sentence after: <sentencel>?"
ane

GPT3.5 0.5%vs14.4% 0.3%vs5.4% 0.07%vs4.3% 0.6%vs5.5% 0.8%vs7.2% 0.7% vs 5.5%
GPT4 0.8%vs 65.9% 0.9%vs40.2% 0.5%vs 33.9% 0.9%vs41.0% 0.6% vs 42.7% 0.3% vs 31.7%

GPT4 is not capable of doing inverse search.
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Inverse Search

Translate: What is character in this (commonly-used) Chinese idiom?

R BT R A7

Prompt 1: FiE“XERNG BIXEH4F?  GPT3.5 accuracy 9.4%, GPT4 accuracy 17.6%
Chinese Idiom Prompt 2: FiE“BXNT"BIXZH4F?  GPT3.5 accuracy 29.5%, GPT4 accuracy 36.1%
Task Prompt 3: FiE"REXR"BIXEH4AF? GPT3.5 accuracy 32.0%, GPT4 accuracy 76.7%

Prompt 4: FiE"BEAX"BIXET4AF? GPT3.5 accuracy 56.7%, GPT4 accuracy 90.6%

Translate: What is sentence of this (commonly-used) Chinese poem?

Inverse search : “FAHPHE TN E—B) 2 4? GPT3.5accuracy 2.1%,GPT4 accuracy 7.3% Chinese Poem
Forward search: “SHEER—MNE' BN T —A2H 4?7 GPT3.5 accuracy 33.0%,GPT4 accuracy 66.5% Task



Inverse Search

: What’s the verse in the Bible before <versel>

ZH What's the verse in the Bible before "And surely your blood of your lives will | require; at the
hand of every beast will | require it, and at the hand of man; at the hand of every man's
brother will | require the life of man."

The verse you've provided is Genesis 9:5 (in the King James Version). Therefore, the verse
right before it, Genesis 9:4, is:

"But flesh with the life thereof, which is the blood thereof, shall ye not eat."

This is part of the covenant that God established with Noah after the flood, which includes

various instructions and promises.

Takeaway10:
The current model architecture cannot do the
inverse search. Therefore, COT or RAG is needed.

What's the verse in the Bible before "And surely your blood of your lives will | require; at the
hand of every beast will | resssizedizensdatibabons.atmaniot thabandotaronsrasia

brother will I require the i 1. extract the chapter/verse number \

. Forward knowledge search
|The verse you've provided is Genesis 9:5 (i|1 thekina 1 2. subtract by one ‘K
right before i:

["But flesh with the life thereof, which is the blood thereof, shall ye not eat." ]
This is part of the covenant that God established withMtaat o floaclidaloblealydds

3. extract the verse

Chain of Thought

various instructions and promises.

Genesis 9:5 King James Version (KJV)

And surely blood of your lives will | require; at the hand of every
beast will | and at the hand of man; at the hand of every

man's brothe e the life of man.
Chapter/verse number at the beginning

Chapter/verse number at the end

animal is put to death when it kills a human. "Surely for your lifeblood | will de
reckoning; from the hand of every beast | will require it, and from the hand gi&¥ian. From
the hand of every man's brqther/ will require the life of man" (Genesis 9:5). Instinct teaches ‘
animals to fear men. "And the fear of you and the dread of you shall be on every beast of

The Bible is “sufficiently augmented” in the
pretrain data, with chapter/verse numbers
sometimes at the beginning or end.




Knowledge Capacity Scaling Law



Knowledge Definition

* In this paper, a piece of knowledge is a tuple of three strings: (name,
attribute, value) = (n, a, v). For instance, n = “Anya”, a = “birthday”, v =
“Oct 2, 1996”.

* This format is commonly used in existing literature for research about
information extraction, knowledge localization, and knowledge
editing etc.



Complexity of Knowledge Set (Motivation)

* The complexity of a knowledge set is determined not only by the
number of knowledge pieces but also by the length of the value
string v, the diversity of the vocabulary, and other factors. For
instance, if the attribute a = “passport number,” then the value v
contains more bits of knowledge compared with a = “gender,”
because the former has significantly higher diversity. If the attribute a
= “birth date,” then the value v could consist of 3 chunks: (10, 2,
1996).



Complexity of Knowledge Set (Notation)

Considering these examples, we propose a set of hyperparameters that may influence the com-

plexity of knowledge: Set of names
1. N — the number of (distinct) names n, denoted by N. [\mathcal{N}| = N
2. K — the number of attributes a, with A representing the set of attributes. For simplicity, we

3.

Number

of

chunks 4.

for a
value

D.

assume |A| = K is fixed. |\mathcal{A}| =K

Set of attributes
T' — the number of tokens 7', where every character in v belongs to 7 for some |7| =T. For

example, we can think of 7" as “vocab size” in a tokenizer. Set of tokens \mathcal{T}| =T
Number of tokens for a chunk
C and L — the number of chunks and the length of each chunk for the value: each value

v € (TH)Y can be expressed as v = (vi,vs,- - ,vc), where v; € TE.

D — the diversity of chunks: for each piece of knowledge (n,a,v) and i € [C'], the chunk v;

belongs to D, C T, for some set with cardinality D = |D,| < T
For example, the birth month can only be from 1 to 12.
So \mathcal{D} a={1,2,3,4,5,6,7,8,9, 10, 11, 12} \in \mathcal{T}*L with a cardinality
much smaller than TAL.
In short, the diversity is defined as the cardinality of the set of all possible values in the chunk.



Knowledge Set Construction (Theoretical)

In our theoretical result, we introduce a dataset bioD(N, K, C, D, L,T) defined as follows:

Definition 2.2 (bioD data generation). Consider a fived set of K attributes, such as a set A =
{“ID 17... “ID K"}, and a fized set Ny of candidate names (with No = |[No| > N).

1. Generate N names uniformly at random (without replacement) from Ny to form N

2. For each attribute a € A, generate D distinct strings wi 4, -+ ,Wp.a € T uniformly at random
(without replacement) to form the diversity set D,.

3. For each name n € N and attribute a € A, generate value v*(n,a) = (vy,v9, -+ ,vc) by
sampling each v; € Dq uniformly at random. Step2 D choices for each chunk, sampling from all

Let Z = {(n,a,v*(n, a)}neN s be the knowledge set. possible sequences of tokens with length L, so TAL

Bit Complexity Upper Bound choose D to the power of K

Proposition 2.3 (trivial, bit complexity upper’bound). Given Ny and A and T, to describe a
knowledge set generated wn Definition 2.2, on€ needs at most the following number of bits:

Stepl NO choose N NG| 7L NG| 7L
log ( N°> + NKClog, D + K log, (D> leongO + NKClog, D+ KDlogy —- -

(The approximation is valid when |[Np| > N and TY > D.) We will present a bit complexity
lower bound in Section 5. Step3 D choices for each name, each attribute and each chunk, so DA{NKC}



Knowledge Set and Dataset (Empirical Setting)

0. First, middle, and last names from 400, 400, and 1000 choices
1. Birth years range from 1900 to 2099, months 1-12, days 1-28.
2. Birth cities from 200 US cities

3. Universities from a list of 300 US institutions.

4. Majors are from 100 college disciplines

5. Employers are chosen from 263 companies

6. Work location uniquely determined by employer

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and
guidance from faculty members at Massachusetts Institute of Technology. She completed her education with a focus on
Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

In this paper, we explore three variations of such datasets: (2.1)

e bioS(N) represents an online dataset for N individuals, where each biography is generated
with new randomness for the selection and ordering of six sentence templates on-the-fly.

o bioSSimpIe(N ) denotes a similar dataset, but here, each biography is generated once with a fixed
random selection and ordering of the sentence templates.

e bioR(NN) refers to the same dataset, but with each biography written 40 times by LLaMA?2 |35]
to increase realism and diversity.



Bit Complexity Lower Bound (Theoretical)

Consider a model F' with weight parameters W € W. Assume F is trained on a bioD(N, K, C, D, L, T)
dataset Z as defined in Definition 2.2 using any optimizer; this process is represented as W = W (Z2)
(the model’s weight is trained as a function of the training dataset Z). During the evaluation
phase, we express F through two functions: F'T (W, R), which generates names, and F-(W,n, a, R),
which generates values given (n,a), where R denotes the randomness used in generation. Let
F{-(W(Z),n,a, R) represent the first chunk of F-(W(2),n,a, R). We evaluate F by calculating
the following three cross-entropy losses:'*

def

l0sS,ame (Z) = E —logPr [F'(W(Z),R)=n] LOSs on name

loss, qiue1 (2 S K
val 61( ) nEN,aEA

loss Z d—if E
value( ) N,

""We use E,, or En o to denote uniform random selection of n € A, a € A.

—log 1?21‘ [FL(W(Z), n,a,R) =v*(n,a)]

Theorem 3.2 (bit complexity lower bound). Suppose N > Q(Dlog N). We have
Ny— N D¢ Th—D

—logPr [F\ (W(2),n,a,R) =vi(n,a)] Loss on 15t chunk of value

Loss on entire value

log [W] > B [Nlogy —poif 5 + N logy oy 5 + KDows oo oy — o(K D)
Ny— N D¢ T B
=N 10g2 e]EZ lossname(z) T NK 10g2 eEZ lossvalue(z) + B 10g2 De(1+0(1))lEZ lossvaluel(z) N O(KD)

The goal of the paper is to study how the number of model parameters competes with this bound.

Corollary 3.3 (no-error case). In the ideal case, if for every data Z, F can generate a name
from N with exact 1/N probability each, then 108S,ame(Z) =log N; and if F can 100% accurately
generate values given (n,a) pairs, then 10ss,qiue(Z) = 10SSyaiue1(Z) = 0. In such a case,

Nog— N TE —D
°N +NKClog, D+ KDlog, —

logy [W| > N log, —o(KD)

asymptotically matching the upper bound Proposition 2.5.

To perfectly store all
knowledge, the model
needs at least this number
of parameters.



Empirical Capacity Ratio
Motivated by Theorem 2.2, ignoring lower order terms, we define the empirical capacity ratio as

Definition 4.1. Given a model F' with P parameters trained over a bioD(N, K,C,D,L,T) dataset
Z, suppose it gives p1 = 108Spame(Z2), p2 = 108Syqiue(Z), 3 = 10SSyaiue1 (£), we define its capacity

ratio and max capacity ratio Correctly extractable knowledge
pL N bits (learned knowledge) / #
R(F) def N10g2 o T NK log;) epz + K Dlogs pers . of parameters
e Nlogy N0 + NKClog, D+ KD log, % All knowledge in bits / # of
RM™*(F) = iz - parameters

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term."

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset Z, suppose
it gives p1 = 10SSpame(Z) and ps = 108Syq1ue(Z), its capacity ratic'

aet N logy 52 ]—l:—)Nlog;Q P nd R(F) N log, ¢ ; N log, So

for No =400 x 400 x 1000 and Sy = 2 x (12-28-200) x 200 x 300 x 100 x 263 (c.f. Footnote 9).

R(F) =




Takeaway11:

Base Scaling Law

10°

The training protocol ensures that each piece of knowledge is
presented 1000 times, a process we refer to as “1000 exposures.” It’s
important to clarify that this differs from making 1000 passes over
the data. For example, a single pass through Wiki data might expose
the knowledge (US, capital, Washington D.C.) 1000 times, whereas a
pass through the Common Crawl might do so a million times.

2 bit / param

1 bit / param
0.5 bit / param
0.25 bit / param

108 1

107 4

learned knowledge (bits)

10° 1

N=10000000
® N=5000000
N=2000000
® N=1000000
® N=500000
N=200000
N=100000
N=50000
® N=20000
® N=10000

All models show R(F) > 2 at the peak

107 10°

model size (#params)

(a) bioS(N) data — 1000 exposures — peak R(F) > 2

models with Rmax(F) £ 1.8 attain near-perfect knowledge accuracies

across all models, R(F) < 2.3

In words, this indicates that for a dataset containing B bits of knowledge, selecting a model size P > B/1.8 is sufficient .
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Figure 11: Scaling laws for the bioS*™"*® and bioR data with 1000 exposures.
Takeaway12:

* |nthe same 1000-exposure setting, peak capacity ratios for GPT2 trained on bioSsimple and bioR are also approximately 2
e Diverse data (rewriting the same data multiple times) does not hurt — and may sometimes improve — the model’s
capacity!
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Ta keaway13: Figure 2: Scaling laws for GPT2 models trained on the bioD(N, K, C, D, L,T') data for 1000 exposures.

Across a broad spectrum of values, with K, C ranging from 1 to 50, D from 10 to 10, 000, L from 1 to 50, and T from 20 to 40,
000, we observe that: GPT2 models consistently exhibit a peak capacity ratio R(F)



Training Time vs Scaling Law
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Takeaway14:
 When trained for only 100 exposures on the bioS(N ) dataset, with N ranging from 10K to 10M, across a broad spectrum of
GPT2 models with sizes from 1M to 0.5B, the peak capacity ratio R(F ) consistently exceeds R(F ) > 1. Therefore, although
1000 exposures may be necessary for a model to reach its maximum storage capacity, training with just 100 exposures

results in a capacity loss of no more than 2x.
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Ta keawayls: Figure 3: Scaling laws for other model architectures on the bioS(V) data with 1000 exposures.
* |Inthe 1000-exposure setting, architectures do not matter much:
* LLaMA architecture performs comparably to GPT2
* Asimilar observation applies to Mistral architecture
[ J

Reducing the MLP size of GPT2 architecture by 1/4 or even eliminating all MLP layers does not affect its capacity ratio.
This suggests, contrary to conventional beliefs, the Attention layers are also capable of storing knowledge .
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Figure 4: Scaling laws for other model architectures on the bioS(/N) data with 100 exposures.

Takeaway16:

* |Inthe 100-exposure setting:

e Even for large models, LLaMA architecture’s capacity ratio can be 1.3x worse than GPT2, even after optimally tuning
learning rates. The results are similar for Mistral.

* Reducing GPT2’s MLP size by 1/4 has a negligible impact on the capacity ratio.
e Removing MLPs decreases the capacity ratio by more than 1.5x.



Insufficient Training Regime and a Closer Comparison
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Figure 5: A closer comparison on LLaMA’s scaling laws with bioS(N) data for 100 exposures.

Takeaway17:
* Inthe insufficient training regime (notably, the 100-exposure setting), except for tiny models, architectural differences
generally do not affect performance, except:
e Using gated MLP reduces the model’s capacity ratio;

 Removing all MLP layers lowers the model’s capacity ratio, although significantly reducing the size of MLPs (e.g., by a
1/4 factor) does not.



Quantization vs Scaling Laws
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Takeaway18:
Quantizing language models (e.g., GPT2) trained with 16-bit floats:

to int8 has a negligible impact on their capacity ;
to int4 reduces their capacity by more than 2x.




Mixture of Experts vs Scaling Laws

LLMs with mixture of even 32 experts can be very efficient in storing knowledge — Result 9
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Takeaway19: despite using only 8.8% of total parameters during inference!

Mok is nearly fully efficient in storing knowledge , capable of leveraging all its parameters despite the sparsity constraint.
Specifically, consider the GPT2-MoE model with 32 experts. If we compute its capacity ratio with respect to the total
number of parameters and compare that to GPT2:

* in the 1000-exposure settings, the peak capacity ratio decreases by 1.3x; and
* inthe 100-exposure settings, the peak capacity ratio decreases by 1.5x.



Junk Data vs Scaling Laws

Not all data are useful for knowledge acquisition. For instance, while Wikipedia is full of valuable
information, the Common Crawl of web pages may not be (there are also many pieces of information
on those webpages, but they may not be useful for a language model to learn, such as the serial
number of a random product). How does the presence of low-quality data impact the scaling laws
of useful knowledge capacity? To investigate this, we create a mixed dataset where:

e 1/8 of tokens originate from bioS(/N) for various N (referred to as useful data), and

e 7/8 of tokens originate from bioS(N’) for a large N’ = 100M (referred to as junk data).



Junk Data vs Scaling Laws
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Takeaway20: (d) 7/8 junk, 600 exposures (e) 7/8 junk, 1000 exposures
* When 7/8 of the training tokens come from junk data (i.e., bioS(N ‘) for N’ = 100M ), transformer’s learning speed for useful
data significantly degrades:
* If trained for the same 100 exposures, the capacity ratio may degrade by 20x compared with training without junk
(compare (b) with (a)).
* Even trained for 300/600/1000 exposures, the capacity ratio still degrades by 3x/1.5x/1.3x compared with 100
exposures without junk ((c), (d), and (e) vs. (a)).



Junk Data vs Scaling Laws

104

10#

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

—— 2 bit / param
—— 1 bit/ param
—— 0.5 bit / param

-;; 0.25 hit / param w

2 :

f— — 3 i

o 107 A @l

=] [=)]

T °

] 2

3 3

Q e

c £

-

3o B

W 10° 4 g 0

£ 1™

E N=1000000 8 N=1000000

2 N=500000 - e N=500000
N=200000 N=200000
N=100000 N=100000
N=50000 N=50000

10° - r
10° 107 10°

model size (#params)

10% 4+ T -
10° 10’ 108

model size (#params)

Takeaway21: (a) no junk, 100 exposures (f) 7/8 rep-junk, 100 exposures

* |If 7/8 of the training tokens come from highly repetitive data (i.e., bioS(N ‘) for N ' = 1K), this does not affect the learning
speed of useful knowledge:
* The 100-exposure capacity ratio of useful data is unchanged ((f) vs. (a)).



Junk Data vs Scaling Laws
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Takeaway22:
When 7/8 of training tokens are from junk (i.e., bioS(N ‘) for N’ = 100M ), adding a special token at the start of every useful
data greatly improves capacity ratio:
With 100 exposures, the capacity ratio degrades only by 2x ((g) vs. (a)).
With 300 exposures, the capacity ratio matches that of the 100-exposure scaling law without junk (compare (h) with

(a)).

—— 2 bit/ param
—— 1bit/param
—— 0.5bit/param

- —— 0.25 bit/ param ,

n %

E

£ o,

.

o

T

L]

H

]

£

<

-l

@ 10°

£

H e N=1000000

e e N=500000
N=200000
N=100000
N=50000

107
model size (#params)

(g) 7/8 junk, 100 exposures, add special symbol

—— 2 bit/ param
—— 1bit/ param
—— 0.5 bit/ param
—— 0.25 bit / param

learned knowledge (bits)
s

e N=1000000
/ e N=500000
~ N=200000
N=100000
N=50000

107
model size (#params)

(h) 7/8 junk, 300 exposures, add special symbol



Summary of Takeaways

1.
2.
3.

10.

LLMs don’t have the same natural progression of human knowledge.
Fine-tuning cannot help do knowledge extraction if we did not pre-train the model on it.

The more augmentation we did for the pre-training dataset, the better results we will have after fine-
tuning.

If we don’t do the augmentation, the knowledge can only be extracted from the token just before the
knowledge. However, if we do the data augmentation, then all knowledge is extractable from the earliest
token.

If we do the data augmentation, all knowledge is extractable from the person’s name. In other words,
“attribute directly saved to the person’s name” is a crucial factor for effective knowledge extraction.

Celebrities help minorities.

The bidirectional model cannot store all knowledge in a person’s name. Whether the knowledge is stored
on the person’s name (pre-train) == QA test accuracy (fine-tune).

The necessity of the chain of thoughts.

Even if the model is trained with the chain of thoughts, during inference time, the chain of thoughts is
still required.

The current model architecture cannot do the inverse search.



Summary of Takeaways

11 + 12 + 13. GPT2, trained with standard AdamW, consistently achieves a 2bit/param capacity ratio across all
data settings after sufficient training. This includes various model sizes, depths, widths, data sizes, types
(synthetic/semi-synthetic), and hyperparameters (e.g., name/value length, attribute number, value diversity).

14. With 100 exposures, an undertrained GPT2’s capacity ratio falls to 1bit/param.

15. In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a universal rule: all models, even
without MLP layers, closely achieve this ratio.

16. With 100 exposures, some archs show limitations; notably, LLaMA/Mistral’s capacity ratio is 1.3x lower than
GPT2’s, even after best-tuned learning rates.

17. Further controlled experiments indicate that “gated MLP” usage leads to LLaMA/Mistral architecture’s
underperformance in knowledge storage.

18. Quantizing to int8 does not compromise model capacity (even for models on the boundary of 2bit/param);
however, quantizing to int4 reduces capacity to 0.7bit/param.

19. MoE models, even with 32 experts, only reduce 1.3x in capacity compared to the base scaling laws, despite
using just 8.8% of the total parameters during inference.

20 + 21. Junk data significantly reduces model capacity. As an example, with a 1:7 ratio of “useful to junk”
training tokens, capacity for useful knowledge loses by a factor of 20 x, even when useful knowledge is exposed
100 times.

22. An effective mitigation is to prepend a special token to all useful knowledge. This is akin to adding a domain
name like wikipedia.org at the start of every Wikipedia paragraph; the model autonomously identifies high-
quality data without prior knowledge of valuable domains.
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