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Problem Background

Design objects with specific desired properties.

o For example: design a neural network architecture to minimize the test loss on
a classification task.

Previous research primarily focuses on single-objective optimization, which fails to
capture real-world complexities:

o For example: design a neural network architecture that demands both low loss
and minimal parameter counts.

Offline multi-objective optimization (MOO): leveraging an offline dataset of
designs and their associated labels to minimize multiple objectives simultaneously.
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Problem Formulation

Find z* € X suchthatthereisno € X with f(z) < f(=z*), where f : ¥ - R”
is a vector of m objective functions, and < denotes Pareto dominance.

A solution z is said to Pareto dominate another solution =* (denoted as f(z) < f(z*))
if:
Vie{l,...,m}, filx) < filx?)
and 3j € {1,...,m} suchthat f;(x) < f;(z").

A solution z* is Pareto optimal if there is no other solution € X that Pareto

dominates z*. The set of all Pareto optimal solutions constitutes the Pareto set
(PS). The corresponding set of objective vectors, defined as {f(z) | x € PS} | is

known as the Pareto front.
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Flow Matching

A conditional probability p:(x | ), t € [0, 1], evolving from an initial distribution

po(z | 1) = g(x) to an approximate Dirac delta functionpi(x | 1) = d(x — x;1). This
evolution is conditioned on a specific point 1 from the distribution Pdata and is
driven by the conditional vector field ui(x | z1).

The process begins by drawing initial noise o from g(xo). This noise is then linearly
interpolated with the data point x; :

x|x,t=(1—1t) -+t -x1, TH~ q(T0).
Training this conditional flow matching model involves optimizing the loss function:

Et;pdata(ml)aQ(mO)”’ﬁ(mJ t7 9) _ (.’Bl - mo) ||2

We can then use the learned vector field (x, t; 8) to generate samples by solving
the neural ODE.
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Multi-Objective Predictor Guidance

" : Traditional Predictor Guidance i-Objecti ' '
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Multi-Objective Predictor Guidance

e Traditional predictor guidance in flow matching is derived as:
~ . 1—-1
U(xy,t,y;0) = 0(24,1;0) + — Va log pa(y | 4, 1),

where ps(y | z1,t) represents the predicted property distribution.

o We optimize multiple properties [fi(z),- - - , fm(x)] simultaneously by defining a weight
vector w = [wy,ws, -+ ,wy], Where each w; > 0 and Y., w; = 1. Then the weighted
property prediction is written as:

m

Folas B) =Y — fi@i(xe); Bo)w,

=1
where f; predicts the " objective for &+, trained using only &1 data, and the
negative sign indicates minimization.
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Multi-Objective Predictor Guidance

o We formulate the weighted distribution as:
paly | &1(x,),w) = =0/ 7
where 7 is a scaling factor and Z is the normalization constant.

e Similar to the single-objective guidance, we then have:
. . 1—1 A
(&0, t,y; 0) = 0y, £ 0) + V——Va, fu(@s; B).

o For the sample z; at time step ¢, we advance to the next time step:
& =zl + 0(x!, t,y; 0)At + gV Ate,
where s = t + At indicates the next time step, g = 0.1 denotes the noise factor,
and € is a standard Gaussian noise term. By sampling different €, we could obtain
O offsprings at each time step.
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Neighboring Evolution

o Weighted distributions with similar weight vectors are Neighboring Evolution
likely to produce similar samples. For a distribution 1.0
associated with «*, its neighbors are identified as the
K distributions whose weight vectors have the 0.8 ,Tfapfl%\ )

V2

smallest angular distances to w". 0.6 S =0
' Knowledge >
. , , Sharing, < o
o Given that there are K neighboring samples for 0.4 &
sample ¢ and the O offsprings we obtained before, 57

9
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o We Update the current sample ; using the
neighboring set X;:
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Experiment: Tasks

e Synthetic Function (Synthetic): encompasses several subtasks involving popular functions
with 2-3 objectives, aiming to identify the Pareto Set with offline designs;

e Multi-Objective Neural Architecture Search (MO-NAS): consists of tasks searching for a
neural architecture that optimizes multiple metrics, such as latency and parameters count;

e Multi-Objective Reinforcement Learning (MORL): involves finding a control policy for a
robot to maximize speed and energy efficiency or objectives related to running and jumping;

e Scientific Design (Sci-Design): includes tasks that concentrate on molecule or protein
discovery to achieve certain desired properties.

e Real-World Applications (RE): encompasses a variety of practical optimization challenges,
including four-bar truss and pressure vessel design. The MOPortfolio task, which focuses on
optimizing expected returns and variance of returns is also included here.
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Experiment: Evaluation Metrics Hypervolume (HV)

o The HV metric quantifies the size of the objective space that is dominated by the
candidate set B and bounded by a reference point r = (r',7%,...,r™).

Mathematically, the HV is defined as:
HV(B) =vol | |J [[lv', 7] |,
yeBi=1

« where [['%,[y*, "] represents an m-dimensional hyperrectangle (or box) spanning
from the coordinates of ¥ to the reference point » along each objective, and
vol(-) denotes the Lebesgue measure of the union of these hyperrectangles.

e In simple terms, a larger hypervolume indicates that the solution set is both close to
the Pareto front and well-distributed across the objective space.
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Experiment Results

ParetoFlow consistently achieves the highest
ranks across all tasks, underscoring its
effectiveness.

Both DNN-based and generative modeling-
based methods frequently outperform D(best),
illustrating the strength of predictor and
generative modeling.

MO-NAS and Sci-Design tasks are
predominantly discrete, with MO-NAS having a
higher dimensionality. Generative modeling
methods show reduced effectiveness on MO-
NAS, which may stem from the difficulty in
modeling high-dimensional discrete data.
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Table 1: Average rank of different methods on each type of task in Off-MOO-Bench.

Methods | Synthetic MO-NAS MORL Sci-Design RE |  All Tasks

D-Best 16.82 +£6.28 14.42+4.11 15.004+4.00 13.754+6.91 18.06+3.93 | 16.02 +5.13

E2E 10.91 £8.20 6.064+3.32 12.50+1.50 9.754+4.97 9.69 + 5.65 8.73 + 5.88
E2E + GradNorm | 12.64 + 6.68 13.42 +5.54 8504+ 0.50 13.50 £5.12 1419+ 5.87 | 13.31 & 5.87
E2E + PcGrad 9.45 4+ 6.37 6.42 +3.18 16504+ 250 14.00+3.16 10.88+6.17 | 9.40 £ 5.70
MH 1155+ 7.19 5264+ 3.93 12.00+£4.00 1250+ 3.28 10.00+ 5.67 | 8.87+6.00

MH + GradNorm | 10.45 +6.21 16.42 +£4.84 18.00+2.00 14.75+4.44 17.00+4.72 | 15.27 +5.64
MH + PcGrad 1145+ 458 6.84 + 2.83 1850+ 050 13.50+541 11.06+6.24 | 10.08 + 5.46
MM 4.91 +4.17 6.74 + 3.81 16.50 £ 1.50 6.75 +4.32 6.69 4 3.46 6.71 +4.31

MM + COMs 13.00 £3.86 953 +4.42 1250+ 250 1225+6.83 14.62+4.75 | 12.15 + 5.06
MM + RoMA 1327+ 7.53 8214575 10.00+3.00 12.00+245 10.25+5.14 | 10.27 £+ 6.06
MM + IOM 6.91 + 3.78 5.37 £ 3.60 6.50 £+ 0.50 10.75 £1.92 T7.25 +£4.02 6.73 + 3.88
MM + ICT 14.45 £ 5.77 8.53 +3.12 9.50 + 3.50 1250+ 7.12 11.75 +£6.54 | 11.12 £ 5.77
MM + Tri-Mentor | 11.00 £ 5.89  9.05 £ 5.71 10.50 £1.50 13.00 £+ 3.54 10.50 £+ 5.82 | 10.27 + 5.65
MOEA/D+ MM | 10.556 +4.83 1258 +£5.02 11.00+1.00 10.75 +£6.87 12.12+6.62 | 11.81 + 5.66
MOBO 1091 +4.42 14.74 £3.82 17.00+0.00 &.25+6.61 11.00 £5.79 | 12.37 £ 5.32
MOBO-gParEGO | 13.36 +3.98 16.63 £3.77 21.00+0.00 12.75+8.04 17.69+4.55 | 16.13 +4.91
MOBO-JES 1727+ 3.11 22.00+£0.00 21.00£0.00 18.75+5.63 13.62+5.19 | 18.13 4+ 5.00
PROUD 8.50£6.33 1453 +£4.43 2.5040.50 6.25 + 3.49 .75 £ 5.02 9.46 + 6.39
LaMBO-2 1018 + 6.55 14.37 £4.66 3.00+1.00 500+ 1.22 5.00+4.72 | 9.44 + 6.49
CorrVAE 11.73 +£6.14 17.74 £2.95 4.50 £ 0.50 8.00 £ 4.18 9.56 £ 6.00 | 12.69 +6.35
MOGFN 10.55 £6.04 15.95+3.98 3.50 4+ 1.50 5.50 £+ 4.50 5.88 +4.97 | 10.42 + 6.63
ParetoFlow (ours) | 4.00 & 3.88 347 £ 426 1.00 £ 0.00 2.75 + 148 244 + 345 3.12 +3.77
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Conclusion

e In this work, we apply flow matching to offline multi-objective optimization,
introducing ParetoFlow.

e Our multi-objective predictor guidance module employs a uniform weight vector for
each sample generation, guiding samples to approximate the Pareto-front.

o Additionally, our neighboring evolution module enhances knowledge sharing
between neighboring distributions.

e EXxperiments across various benchmarks confirm the effectiveness of our approach.

12
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Thanks for your attention!
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