3 ICLR Flow Matching for
Generative Modeling

Yaron Lipman'?, Ricky T.Q. Chen’, Heli Ben-Hamu?,
Maximilian Nickel!, Matt Le

Presenter: Ye YUAN

OO Meta |

SZ | 193]
> A ltaR Y
R T

WEIZMANN
INSTITUTE
OF SCIENCE

School of Computer Science é

Contents

« Author Introduction

« Preliminary Knowledge

« From Discrete Normalizing Flows to Continuous Normalizing Flows
. Flow Matching

« Discussion and Conclusions

o Questions and Answers

School of Computer Science é

Authors

Yaron Lipman Ricky Tian Qi Chen Heli Ben-Hamu
Visiting professor from Weizmann Research Scientist at Meta Final year PhD student under the
Institute of Science (Israel) at Meta Fundamental Al Research (FAIR) supervision of Yaron Lipman

School of Computer Science é

Preliminary — Likelihood-based Generative Models

Sample {x!,x?, ..., x™} from Pgqrq (X)

: Real Image m m
. : - 0* = arg max l_[Po(x') =arg max log l_[Pg(x")
: i=1 i=1
) m
=arg mgaxz logPy(x') =~ arg max Ex_p,.,[l0gPe ()]
‘ G(z) =x =1
(not related to 6)
= argmgx [Paaa@logPo()dx = [Paatal)logPaaa)dx
X X
Difference between P and P
P(Z) 0 Pe(X) Pdata(x) =arg méaxf Piata(x)log P:iii) dx =aqrg mﬁ}'n KL(Pyqtal |p9)data 0
X

Maximum Likelihood = Minimize KL Divergence

o Py.a(X): probability distribution of the data

e Py(x): approximate probability distribution of the data

e P(z): probability distribution of the latent variable,
usually a Gaussian distribution

Preliminary — Jacobian Matrix

f:R" > R"
Then the Jacobian matrix of f, denoted J; € R™", is defined as:

|

Consider a function f : R — RZ, with (x,) » (f1(x, »), f>(x, ¥)), given by

fl(may)
f2($ay)

VT

|V fon

T + siny

of
6.’131

Ofm
| Oz

of1
ox,

Ofm
Oz, |

The Jacobian matrix of f is

Jf(xay)

[0f1

School of Computer Science é

Ox

0

oz

School of Computer Science é

Preliminary — Jacobian Matrix

e According to the inverse function theorem, the matrix inverse of the Jacobian matrix
of an invertible function f: R” = R” is the Jacobian matrix of the inverse function.

e Thatis), =1, whereg()=1f1().

- 0fi 0f1 7 -o0xy . Oziq

drx; 0=z, df1 d fn 1
Jp(z)=1: .. Jpa(f(@) =1+ . | =)

Ofm 0fm % .. Oz,

-3%“ BL@- L3f; 3F) -

Pre

School of Computer Science é

liminary — Determinant

The determi

The determinant is a scalar-valued function of the entries of a square matrix. The
determinant of a matrix A is commonly denoted det(A), det A, or |A]|.
det (A7) = det(A).

det(AB) = det(A) det(B)

det (A1) = ——— = [det(4)] . 1) = 4ot

 det(4)

(a+c,b+d) r1+r3 141243

— (c,d)

and the determinant of a 3 X 3 matrix is

a b c
d e f|=aei+bfg+cdh—ceg—bdi—a

g h 1

ad—bc

<

~
S
~
~
~
~
.~
~
~
~
~ -
~
a b h
1 ..
~
~
~
~
..
~

(0,0)
Area = Absolute value of the determinant 7

School of Computer Science é

Preliminary — Change of Variables Theorem (in PDF)

Z IS a one-dimensional variable. (2"

m(z) is a simple distribution, like a (2)
standard normal distribution. ‘ﬁ\
x = f(z) is a mapping. : > 7 Whatare

X) is the probability distribution of x.
p(x) P y x = £(z)

their relations?

If we know the probability density of
z', n(z"), and we know X’ = f(z’), what p(x)
can we tell about p(x’)?

School of Computer Science é

Preliminary — Change of Variables Theorem (in PDF)

i n(2) [mayaz =1
e 1(z) is a uniform distribution defined } 1

within O to 1, and zero probability . .

- G, 7/ 1™

otherwise. | | x = f(2) 7 1™, 1
e X= f(.z) =2z + 1 |s. ? melxpp_lng.. T p(x') = En(z’)
e p(x) is the probability distribution of x.

| p() [peoax =1

e Since both m(z) and p(x) are 0.5 ‘

probability density functions, their . X

integrals should be same and equal
to 1.

School of Computer Science é

Preliminary — Change of Variables Theorem (in PDF)

General case (one-dimensional):

Similarly, the blue region and the

green region should have the , —
same area. n(z') {f | 1 . p(x)Ax = m(z")Az
A I (. Az
2T e = a0
Notably, here we need dz/dx, so , Ax
it implicitly requires that x = f(z) p(x") & i P iy ’ dz
is an invertible mapping such 1 {l S — p(r) =m(Z g
that z = £1(x). — ‘ > X
x' x4+ Ax

10

School of Computer Science é

Preliminary — Change of Variables Theorem (in PDF)

General case (two-dimensional): 2, 4 x5 4 __

« In this case, the probability et
density becomes the axis
perpendicular to the plane. Az B o

5 _
m(z") xzz

« Therefore, in this case, the Az, p(x) | Axy
volume of the blue po|yhedron ‘ :

> 21 Axq4 > X1
should be same as the volume
of the green polyhedron. Ax A
/ 11 X21 || _ '
p(x") ‘det Aty Axy,] =n(z")Az Az,
\ Y } \)
Area of green region Area of
blue region

11

pC) |dee [t 13 || = mazaz,
p(x’) AzllAzz det 22; ﬁi;] - n(z’)
() Jdet [yt | = e
e et [52707" ortran]| = 7
P e [0 Granc]| = m)
p(x)|det(J)| = m(z") p(x") =mn(z")

p(x") = n(z’)|det(]f—1)|

x = f(2)

1
det(Jy)

School of Computer Science é

Preliminary — Change of Variables Theorem (in PDF)

12

Discrete Normalizing Flows (DNF)

Normal P (x) i\ — Nd
= t(] -
Distribution pG(x) ”(Z .)l e ({G 1‘)|
z' =G (xt
n(z) ’_’ generator Limitation: (x)
e G must be invertible.
100x100x3

So, G has constrained
expressiveness.q/

(%) p1(x) p2 (%) p3(x)
@»@»ﬂ»k»ﬂ»&
p1(xt) = m(2") (|det (J4:2 z' = 67t (- Gt (x1))

)
) (e)

pa(x°):”(Z)(det(6ot))(‘det(i)

We can have more!
) Why not have infinitely many?

pi(xt) = n(2!) (|t /)

13

School of Computer Science é

Continuous Normalizing Flows (CNF)

D2 (x)
Q)tl (x) N
o»l@»l»k o
Po(X) Pe1(x) Pe2(x) p1 (x)

S—

D1 (x)

« Infinite number of intermediate probability distributions is referred as a probability
density path. Mathematically, we have p : [0,1] x R* — Rsq, where [pi(z)dz = 1.
o Atime dependent vector field defines the transformation between any consecutive

distributions: x;, »; = x; + v:(x,) * At. When At — 0, we have ﬂ = v, (x).
o Aflow ¢:[0,1] x R* — R? defines accumulative changes from xo to x; through the
solution of an ordinary differential equation (ODE) initial value problem: —abt() = ve(o¢())

where ¢o(x) = z.

- We use subscript to denote the time parameter, e.g., p(x), to align with the notations in the original paper. 14

School of Computer Science é

¢:[0,1] x R? — R

d
d—tfbt(iﬁ) = v (Pe(2))

Wh

Continuous Normalizing Flows (CNF)

D2 (X) ¢o()

Invertibility is guaranteed by the symmetricity of
O*ﬁ*@"."k % ODE. Its inverse flow ¢; '(z) is defined by the
reverse vector field —v:(x).
Po(x) Pe1(x) Pe2(x) P1 (x) The existence and uniqueness of the solution of

S ’ the ODE is guaranteed by Picard-Lindel6f
1 (%) Theorem (Cauchy-Lipschitz Theorem).

e A CNF is used to reshape a simple prior density p, (e.4., pure noise) to a more
complicated one, p,, via the push-forward equatlon Pt = |0t]«po where the push-forward
operator * is defined by [6:].po(z) = po(¢; ' (x))det[¢; (w)] :

e A vector field v, is said to generate a probability density path v, if its flow @, satisfies the
above equations. One method of testing if a vector field v, generates a probability path p;
is the continuity equation: %pt()+ div(pi(z)vi(x)) = 0, where div = 3¢, ;2.

- We use subscript to denote the time parameter, e.g., p(x), to align with the notations in the original paper. 15

School of Computer Science é

Flow Matching

e Letx; denote a random variable distributed according to some unknown data
distribution g(x,). Assume we only have access to data samples from g(x,) but
have no access to the density function itself.

o Furthermore, let p; be a probability path such that p, = p is a simple distribution,
e.g., the standard normal distribution p(x) = N (x|0,1), and let p, be approximately

equal in distribution to q.
e Given a target probability density path p;(x) and a corresponding vector field u,(x),
which generates p;(x), the Flow Matching (FM) objective is defined as:

EFM(Q) — Et,pt(m)Hvt(m) _ ut(m)||2

where 6 denotes the learnable parameters of the CNF vector field v;, t ~ U [0, 1]
(uniform distribution), and x ~ p,(x).

16

School of Computer Science é

FIOW Matching No prior knowledge for what an appropriate p, and u, are. ¢/

 Don’t have access to a closed form u; that generates the
desired p;. &

e A simple way to construct a target probability path is via a mixture of simpler
probability paths:

o Given a particular data sample x,, we denote by p,(x|x,) a conditional
probability path such that it satisfies p,(x|x;) = p(x) attimet=0

o Design p,(x|x,) att =1 to be a distribution concentrated around x = x,, e.g.,
p,(x|x;) = N (x|x;,0?I), a normal distribution with x; mean and a sufficiently
small standard deviation a > 0.

mu»:/@mmmmwnma

muﬂ:]Emﬂmmwnwuwﬁm

g () = /ut(x|$l)pt($|x1)q(x1)dxl*

pe()
* Can be proved with the continuity equation, see appendix of the paper for more details.

17

School of Computer Science é

FIOW Matching « Calculating u.(x) involves intractable integration. ¢?

Fortunately and surprisingly, we can directly use vector fields u,(x|x,) that generate
conditional probability paths p,(x|x,) instead of the marginal vector field u,(x).

o Consider the Conditional Flow Matching (CFM) objective:

2
Lemi(0) = Et q(21),p (2]21) Hvt(x) - ut(m|$1)“
wheret ~ U [0,1], x; ~q(x) and x ~ p;(x]|x,).

o Unlike the FM objective, the CFM objective allows us to easily sample unbiased
estimates as long as we can efficiently sample from p,(x|x;) and compute u,(x|x,),
both of which can be easily done as they are defined on a per-sample basis.

ﬁFM(G) — Et,pt(m) H’Ut(ZB) — Ut(fl?)| ’

The FM and CFM objectives have identical gradients w.r.t. 6.”

* Can be proved easily, see appendix of the paper for more details. 18

School of Computer Science é

Flow Matching

 The Conditional Flow Matching objective works with any choice of conditional
probability path and conditional vector fields.

e This paper constructs p;(x|x;) and u,(x|x;) with Gaussian conditional probability.
2
pe(x|ry) = N (x| pe(xy), o (21)71)

set uy(xy) =0and o,(x;) =1 and set u,(x;) = x; and g,(x1) = Gpmin-

e Construct the flow as:
V() = og(x1)x + pe(T1)

d
Ewt(x) = Ut(wt(ﬂiﬂiﬁl) - ‘CCFM(Q) £ ,q(x1),p(x0) (Ut(wt xO - _wt Lo H
o The unique vector field that defines ¢+ has the form (prime denotes derlvatlves).

oy (1)
or(x1)

(2 — pe(w1)) + p (1)

ug(x|z1) =

* See appendix of the paper for more details. 19

School of Computer Science é

Optimal Transport conditional Vector Fields

e Define the mean and the std to simply change linearly in time:
pe(z) =try, and oy(z) =1 — (1 — omn)t

o Then we can derive that this path is generated by the vector field:
r1 — (1 — omin)

1— (1 — O'min)t
The corresponding conditional flow is derived as:

Yi(x) = (1 — (1 — opin)t)x + taq
e The CFM loss becomes:

ug(x|z,) =

o)) = (21— (1= owin)o) |

£CFM(9) = Et,Q(ﬂ’fl):p(mO)

20

School of Computer Science é

Alternative Implementation of Flow Matching

We can optimize our model based on the loss function derived on the previous slide,
or directly employ the vanilla CFM loss as follows:
Len(0) = Bt g(ar) po el |[ve(z) = wi(@lzr)||”
e g(x,y) can be approximated by the training dataset.
e t can be randomly sampled from O to 1 until the training process converges.
e Forp:(x|x;), we have:
pe(x|ry) = N(z | Nt(zl)agt(ml)zl)

e Therefore, we can sample x as: u,(x;) + o.(x;) * €, where e ~ N'(0,1).
e« Then we can calculate the conditional vector field through:
r1 — (1 — Opin)x

1 — (1 — Jmin)t
e And thus train our model based on the above regression loss.

ug(x|xq) =

21

School of Computer Science é

Discussion and Conclusions

e Since we can have different designs for the probability path, flow matching can
theoretically unify the score-matching model (Variance Exploding Diffusion) and
diffusion denoising probabilistic model (Variance Preserving Diffusion).

e This is similar to the purpose of diffusion models with stochastic differential
equations paper.

o Diffusion models use the evidence lower bound (ELBO) as a proxy objective to
optimize the model, whereas flow matching directly uses the log likelihood.

22

School of Computer Science é

Thanks for your attention!

23

	Slide 1
	Slide 2: Contents
	Slide 3: Authors
	Slide 4: Preliminary – Likelihood-based Generative Models
	Slide 5: Preliminary – Jacobian Matrix
	Slide 6: Preliminary – Jacobian Matrix
	Slide 7: Preliminary – Determinant
	Slide 8: Preliminary – Change of Variables Theorem (in PDF)
	Slide 9: Preliminary – Change of Variables Theorem (in PDF)
	Slide 10: Preliminary – Change of Variables Theorem (in PDF)
	Slide 11: Preliminary – Change of Variables Theorem (in PDF)
	Slide 12: Preliminary – Change of Variables Theorem (in PDF)
	Slide 13: Discrete Normalizing Flows (DNF)
	Slide 14: Continuous Normalizing Flows (CNF)
	Slide 15: Continuous Normalizing Flows (CNF)
	Slide 16: Flow Matching
	Slide 17: Flow Matching
	Slide 18: Flow Matching
	Slide 19: Flow Matching
	Slide 20: Optimal Transport conditional Vector Fields
	Slide 21: Alternative Implementation of Flow Matching
	Slide 22: Discussion and Conclusions
	Slide 23: Thanks for your attention!

