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Preliminary — Likelihood-based Generative Models

Sample {x!,x?, ..., x™} from Pgqrq (X)

: Real Image m m
. : - 0* = arg max l_[ Po(x') =arg max log l_[ Pg(x")
: i=1 i=1
) m
=arg mgaxz logPy(x') =~ arg max Ex_p,.,[l0gPe ()]
‘ G(z) =x =1
(not related to 6)
= argmgx [ Paaa@logPo()dx = [ Paatal)logPaaa)dx
X X
Difference between P and P
P(Z) 0 Pe(X) Pdata(x) =arg méaxf Piata(x)log P:iii) dx =aqrg mﬁ}'n KL(Pyqtal |p9)data 0
X

Maximum Likelihood = Minimize KL Divergence

o Py.a(X): probability distribution of the data

e Py(x): approximate probability distribution of the data

e P(z): probability distribution of the latent variable,
usually a Gaussian distribution



Preliminary — Jacobian Matrix

f:R" > R"
Then the Jacobian matrix of f, denoted J; € R™", is defined as:

|

Consider a function f : R — RZ, with (x, ) » (f1(x, »), f>(x, ¥)), given by
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f2($ay)
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The Jacobian matrix of f is

Jf(xay)

[ 0f1
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Preliminary — Jacobian Matrix

e According to the inverse function theorem, the matrix inverse of the Jacobian matrix
of an invertible function f: R” = R” is the Jacobian matrix of the inverse function.

e Thatis ), =1, whereg()=1f1().

- 0fi 0f1 7 -o0xy . Oziq

drx; 0=z, df1 d fn 1
Jp(z)=1: .. Jpa(f(@) =1+ . | =)

Ofm 0fm % .. Oz,

-3%“ BL@- L3f; 3F) -
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liminary — Determinant

The determi

The determinant is a scalar-valued function of the entries of a square matrix. The
determinant of a matrix A is commonly denoted det(A), det A, or |A]|.
det (A7) = det(A).

det(AB) = det(A) det(B)

det (A1) = ——— = [det(4)] . 1) = 4ot

 det(4)

(a+c,b+d) r1+r3 141243

— (c,d)

and the determinant of a 3 X 3 matrix is

a b c
d e f|=aei+bfg+cdh—ceg—bdi—a

g h 1

ad—bc

<

~
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~
~
~
~
.~
~
~
~
~ -
~
a b h
1 ..
~
~
~
~
..
~

(0,0)
Area = Absolute value of the determinant 7
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Preliminary — Change of Variables Theorem (in PDF)

Z IS a one-dimensional variable. (2"

m(z) is a simple distribution, like a (2)
standard normal distribution. ‘ﬁ\
x = f(z) is a mapping. : > 7  Whatare

X) is the probability distribution of x.
p(x) P y x = £(z)

their relations?

If we know the probability density of
z', n(z"), and we know X’ = f(z’), what p(x)
can we tell about p(x’)?
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Preliminary — Change of Variables Theorem (in PDF)

i n(2) [ mayaz =1
e 1(z) is a uniform distribution defined } 1

within O to 1, and zero probability . .

- G, 7/ 1™

otherwise. | | x = f(2) 7 1™, 1
e X= f(.z) =2z + 1 |s. ? melxpp_lng.. T p(x') = En(z’)
e p(x) is the probability distribution of x.

| p() [ peoax =1

e Since both m(z) and p(x) are 0.5 ‘

probability density functions, their . X

integrals should be same and equal
to 1.
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Preliminary — Change of Variables Theorem (in PDF)

General case (one-dimensional):

Similarly, the blue region and the

green region should have the , —
same area. n(z') {f | 1 . p(x)Ax = m(z")Az
A I (. Az
2T e = a0
Notably, here we need dz/dx, so , Ax
it implicitly requires that x = f(z) p(x") & i P iy ’ dz
is an invertible mapping such 1 {l S — p(r) =m(Z g
that z = £1(x). — ‘ > X
x' x4+ Ax

10
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Preliminary — Change of Variables Theorem (in PDF)

General case (two-dimensional): 2, 4 x5 4 __

« In this case, the probability et
density becomes the axis
perpendicular to the plane. Az B o

5 _
m(z") xzz

« Therefore, in this case, the Az, p(x) | Axy
volume of the blue po|yhedron ‘ ................... :

> 21 Axq4 > X1
should be same as the volume
of the green polyhedron. Ax A
/ 11 X21 || _ '
p(x") ‘det Aty Axy, ] =n(z")Az Az,
\ Y } \ )
Area of green region Area of
blue region

11



pC) |dee [t 13 || = mazaz,
p(x’) AzllAzz det 22; ﬁi;] - n(z’)
() Jdet [yt | = e
e et [52707" ortran ]| = 7
P e [0 Granc]| = m)
p(x)|det(J)| = m(z") p(x") =mn(z")

p(x") = n(z’)|det(]f—1)|

x = f(2)

1
det(Jy)
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Preliminary — Change of Variables Theorem (in PDF)

12



Discrete Normalizing Flows (DNF)

Normal P (x) i\ — Nd
= t(] -
Distribution pG(x) ”(Z .)l e ({G 1‘)|
z' =G (xt
n(z) ’_’ generator Limitation: (x)
e G must be invertible.
100x100x3

So, G has constrained
expressiveness.q/

(%) p1(x) p2 (%) p3(x)
@»@»ﬂ»k»ﬂ»&
p1(xt) = m(2") (|det (J4:2 z' = 67t (- Gt (x1))

)
) (e )

pa(x° ):”(Z)(det( 6ot ) )(‘det( i)

We can have more!
) Why not have infinitely many?

pi(xt) = n(2!) (|t /)

13
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Continuous Normalizing Flows (CNF)

D2 (x)
Q)tl (x) N
o»l@»l»k o
Po(X) Pe1(x) Pe2(x) p1 (x)

S—

D1 (x)

« Infinite number of intermediate probability distributions is referred as a probability
density path. Mathematically, we have p : [0,1] x R* — Rsq, where [pi(z)dz = 1.
o Atime dependent vector field defines the transformation between any consecutive

distributions: x;, »; = x; + v:(x,) * At. When At — 0, we have ﬂ = v, (x).
o Aflow ¢:[0,1] x R* — R? defines accumulative changes from xo to x; through the
solution of an ordinary differential equation (ODE) initial value problem: —abt( ) = ve(o¢())

where ¢o(x) = z.

- We use subscript to denote the time parameter, e.g., p(x), to align with the notations in the original paper. 14
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¢:[0,1] x R? — R

d
d—tfbt(iﬁ) = v (Pe(2))

Wh

Continuous Normalizing Flows (CNF)

D2 (X) ¢o()

Invertibility is guaranteed by the symmetricity of
O*ﬁ*@"."k % ODE. Its inverse flow ¢; '(z) is defined by the
reverse vector field —v:(x).
Po(x) Pe1(x) Pe2(x) P1 (x) The existence and uniqueness of the solution of

S ’ the ODE is guaranteed by Picard-Lindel6f
1 (%) Theorem (Cauchy-Lipschitz Theorem).

e A CNF is used to reshape a simple prior density p, (e.4., pure noise) to a more
complicated one, p,, via the push-forward equatlon Pt = |0t]«po where the push-forward
operator * is defined by [6:].po(z) = po(¢; ' (x ))det[ ¢; (w)] :

e A vector field v, is said to generate a probability density path v, if its flow @, satisfies the
above equations. One method of testing if a vector field v, generates a probability path p;
is the continuity equation: %pt( )+ div(pi(z)vi(x)) = 0, where div = 3¢, ;2.

- We use subscript to denote the time parameter, e.g., p(x), to align with the notations in the original paper. 15
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Flow Matching

e Letx; denote a random variable distributed according to some unknown data
distribution g(x,). Assume we only have access to data samples from g(x,) but
have no access to the density function itself.

o Furthermore, let p; be a probability path such that p, = p is a simple distribution,
e.g., the standard normal distribution p(x) = N (x|0,1), and let p, be approximately

equal in distribution to q.
e Given a target probability density path p;(x) and a corresponding vector field u,(x),
which generates p;(x), the Flow Matching (FM) objective is defined as:

EFM(Q) — Et,pt(m)Hvt(m) _ ut(m)||2

where 6 denotes the learnable parameters of the CNF vector field v;, t ~ U [0, 1]
(uniform distribution), and x ~ p,(x).

16
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FIOW Matching  No prior knowledge for what an appropriate p, and u, are. ¢/

 Don’t have access to a closed form u; that generates the
desired p;. &

e A simple way to construct a target probability path is via a mixture of simpler
probability paths:

o Given a particular data sample x,, we denote by p,(x|x,) a conditional
probability path such that it satisfies p,(x|x;) = p(x) attimet=0

o Design p,(x|x,) att =1 to be a distribution concentrated around x = x,, e.g.,
p,(x|x;) = N (x|x;,0?I), a normal distribution with x; mean and a sufficiently
small standard deviation a > 0.

mu»:/@mmmmwnma

muﬂ:]Emﬂmmwnwuwﬁm

g () = /ut(x|$l)pt($|x1)q(x1)dxl*

pe()
* Can be proved with the continuity equation, see appendix of the paper for more details.

17
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FIOW Matching « Calculating u.(x) involves intractable integration. ¢?

Fortunately and surprisingly, we can directly use vector fields u,(x|x,) that generate
conditional probability paths p,(x|x,) instead of the marginal vector field u,(x).

o Consider the Conditional Flow Matching (CFM) objective:

2
Lemi(0) = Et q(21),p (2]21) Hvt(x) - ut(m|$1)“
wheret ~ U [0,1], x; ~q(x) and x ~ p;(x]|x,).

o Unlike the FM objective, the CFM objective allows us to easily sample unbiased
estimates as long as we can efficiently sample from p,(x|x;) and compute u,(x|x,),
both of which can be easily done as they are defined on a per-sample basis.

ﬁFM(G) — Et,pt(m) H’Ut(ZB) — Ut(fl?)| ’

The FM and CFM objectives have identical gradients w.r.t. 6.”

* Can be proved easily, see appendix of the paper for more details. 18
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Flow Matching

 The Conditional Flow Matching objective works with any choice of conditional
probability path and conditional vector fields.

e This paper constructs p;(x|x;) and u,(x|x;) with Gaussian conditional probability.
2
pe(x|ry) = N (x| pe(xy), o (21)71)

set uy(xy) =0and o,(x;) =1 and set u,(x;) = x; and g,(x1) = Gpmin-

e Construct the flow as:
V() = og(x1)x + pe(T1)

d
Ewt(x) = Ut(wt(ﬂiﬂiﬁl) - ‘CCFM(Q) £ ,q(x1),p(x0) (Ut(wt xO - _wt Lo H
o The unique vector field that defines ¢+ has the form (prime denotes derlvatlves).

oy (1)
or(x1)

(2 — pe(w1)) + p (1)

ug(x|z1) =

* See appendix of the paper for more details. 19
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Optimal Transport conditional Vector Fields

e Define the mean and the std to simply change linearly in time:
pe(z) =try, and oy(z) =1 — (1 — omn )t

o Then we can derive that this path is generated by the vector field:
r1 — (1 — omin)

1— (1 — O'min)t
The corresponding conditional flow is derived as:

Yi(x) = (1 — (1 — opin)t)x + taq
e The CFM loss becomes:

ug(x|z,) =

o)) = (21— (1= owin)o ) |

£CFM(9) = Et,Q(ﬂ’fl):p(mO)

20
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Alternative Implementation of Flow Matching

We can optimize our model based on the loss function derived on the previous slide,
or directly employ the vanilla CFM loss as follows:
Len(0) = Bt g(ar) po el |[ve(z) = wi(@lzr)||”
e g(x,y) can be approximated by the training dataset.
e t can be randomly sampled from O to 1 until the training process converges.
e Forp:(x|x;), we have:
pe(x|ry) = N(z | Nt(zl)agt(ml)zl)

e Therefore, we can sample x as: u,(x;) + o.(x;) * €, where e ~ N'(0,1).
e« Then we can calculate the conditional vector field through:
r1 — (1 — Opin)x

1 — (1 — Jmin)t
e And thus train our model based on the above regression loss.

ug(x|xq) =

21
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Discussion and Conclusions

e Since we can have different designs for the probability path, flow matching can
theoretically unify the score-matching model (Variance Exploding Diffusion) and
diffusion denoising probabilistic model (Variance Preserving Diffusion).

e This is similar to the purpose of diffusion models with stochastic differential
equations paper.

o Diffusion models use the evidence lower bound (ELBO) as a proxy objective to
optimize the model, whereas flow matching directly uses the log likelihood.

22
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Thanks for your attention!

23
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