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The Reasons why I want to share this paper

● As a researcher from academia, we care more about large language models (LLMs)

fine-tuning, rather than LLMs pre-training, due to limited computational resources.

● However, existing studies about scaling laws mainly focus on pre-training:

○ “Scaling Laws for Neural Language Models” from OpenAI [1].

○ “Training Compute-Optimal Large Language Models” Chinchilla from Google [2].

○ …

● This study fills the gap of scaling laws for fine-tuning LLMs ☺.
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Motivation

● Many potential factors affecting the performance of LLM fine-tuning:

○ Pre-training conditions: LLM model size; Pre-training data size.

○ Fine-tuning: Downstream tasks; Fine-tuning data size; Fine-tuning method.

● Benefits:

○ Improve fine-tuning performance.

○ Understand pre-training from the fine-tuning perspectives.
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Preliminary (Fine-tuning Methods)

● Full-model tuning (FMT): updates all LLM parameters.

● Parameter-efficient tuning (PET): optimizes parts of (newly added) parameters.
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Prompt Tuning

(Soft Prompting) [1]:

Low Rank Adaptation (LoRA) [2]:

[1] B. Lester, R. Al-Rfou, and N. Constant, The Power of Scale for Parameter-Efficient Prompt Tuning. 2021. [Online]. Available: https://arxiv.org/abs/2104.08691
[2] E. J. Hu et al., LoRA: Low-Rank Adaptation of Large Language Models. 2021. [Online]. Available: https://arxiv.org/abs/2106.09685
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Preliminary (Metrics)

● Perplexity [1]:

○ Perplexity is defined as the exponentiated average negative log-likelihood of a sequence. If we have a 

tokenized sequence X=(x0,x1,…,xt), then the perplexity of X is：

● BLEURT (used for general generation task) [2]:

○ BLEURT is an evaluation metric based on a calibrated BERT model. In short, it takes generated sentence

and the ground-truth sentence, then outputs a similarity score.

● RougeL (used for machine translation task) [3]:

○ X is the ground-truth sentence, Y is the generated sentence.

○ m is the number of token in X, n is the number of token in Y.

○ LCS(·) is the number of common tokens but considering order.
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Experiments Setup

● Downstream tasks

○ machine translation and multilingual summarization.

○ WMT14 English-German (En-De) and WMT19 English-Chinese (En-Zn) for translation

○ A self-customized dataset MLSum for multilingual summarization, where each article is

prepended a prompt indicating its language “Summarize the following document in

{language}”.

● Pretrained LLMs

○ Decoder-only Transformer with Multi-query attention

○ One set of En-De LLMs on 283B tokens, one set of En-Zn LLMs on 206B tokens.

○ Each set of models includes parameter sizes 1B, 2B, 4B, 8B, 16B
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Experiments Setup

● Fine-tuning Methods:

○ Full-Model Tuning, Prompt Tuning, Low-Rank Adaptation

● This study explores four factors for the scaling (use fine-tuning data sizes as core):

○ LLM Model Sizes: Performance v.s. Model Sizes v.s. Fine-tuning Data sizes

○ Pre-training Data Sizes: Performance v.s. Pre-training Data sizes v.s. Fine-

tuning Data sizes on 1B model

○ PET Parameter Sizes: Performance v.s. PET parameter Sizes v.s. Fine-tuning

Data sizes on 1B model

● Scaling law evaluation:

○ To test the extrapolation ability of the fitted scaling, the authors use a held-out

set to evaluate. 9



Details of Scaling Settings for Different Factors
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*The data sizes are counted in tokens.

The bolded are the held-out data point, which are used for test the

fitted scaling laws for their extrapolation ability.



How to Fit a Scaling Law?

● Multiplicative Scaling Law:
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● Additive Scaling Law [1]:

A B
+

{A, E, α, β} are data-specific parameters to be fitted, Df denotes finetuning data size, and X 

refer to each of the other scaling factors.

[1] J. Hoffmann et al., Training Compute-Optimal Large Language Models. 2022. [Online]. Available: https://arxiv.org/abs/2203.15556



Performance v.s. Model Sizes v.s.

Fine-tuning Data sizes

● Mean absolute derivation on the empirical 

fitting (∆e) and held-out (∆h).

● In general, multiplicative scaling law 

captures the scaling trend of model sizes 

under finetuning data scaling with small 

fitting and extrapolation errors.

● High mismatch when extrapolating to 16B, 

particularly for LoRA and Prompt on 

WMT19 En-Zh:

○ the insufficiency of empirical data

○ pretraining instability
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Performance v.s. Pre-training Data

sizes v.s. Fine-tuning Data sizes

● Fix model size on 1B model

● Intuitively, finetuning relies on the knowledge 

encoded in the LLM, where model size and 

pretraining data size both matter.

● However, when fix β (the scaling exponent for

fine-tuning data size), the scaling exponent 

for model size αm often outnumbers that for 

pretraining data size αp across finetuning 

methods and tasks, i.e. αm > αp.
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Performance v.s. PET parameter

Sizes v.s. Fine-tuning Data sizes

● Increasing PET parameter sizes affects 

finetuning performance marginally, and even 

results in inverse scaling in some settings.

● Scaling Prompt length suffers from training 

instability, which has also been seen in 

previous studies [1, 2]. In this respect, LoRA is 

more stable and reliable.
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Influence of Fine-tuning Data Size on Different Methods

● β for FMT is often significantly 

higher than that for PET across 

settings, indicating that FMT is 

more data-hungry and also 

benefits more from increasing 

finetuning data.

● LoRA often slightly surpasses that 

for Prompt, achieving better 

finetuning performance with more 

finetuning data than Prompt.
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Influence of Model Size on Different Methods
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● Since the majority of LLM 

parameters is frozen during 

finetuning, PET relies heavily on 

the encoded knowledge in 

pretrained LLMs when adapting 

them to downstream tasks. 

● αm and αp are clearly larger than β 

in PET.



Which finetuning method should we apply for a given task?

● Unfortunately, there is no 

universal answer!

● The scaling trend and actual 

value are highly dependent on 

the downstream task: critical 

points for one task can hardly 

generalize to other tasks.
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How does finetuning affect the generalization capability?

● Whether finetuning benefits 

generalization is method- and 

task-dependent. 

● Overall, Prompt and LoRA 

achieve relatively better results 

than FMT.

● Suggests that when 

generalization capability is a big 

concern, PET should be 

considered.
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Conclusion and Discussion

● LLM finetuning benefits more from LLM model scaling than pretraining data scaling 

across tasks and methods.

● Scaling PET parameters is ineffective, delivering limited gains for both LoRA and 

Prompt.

● Finetuning data have more pronounced influence on FMT than PET, where LoRA 

scales better than Prompt.

● PET depends more on LLM model and pretraining data scaling than finetuning data 

scaling across settings.

● There is no universal answer for which fine-tuning method is optimal for a given task.

● When generalization capability is a big concern, PET should be considered.
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Thanks for your attention!
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Questions

● Could you briefly explain the three fine-tuning methods studied by this paper?

● How does this paper validate the fitted scaling law?

● Are these conclusions useful for your research? How could you integrate these

conclusions to your own projects?
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