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Abstract—Generative artificial intelligence (GAI) is a promis-
ing technique towards 6G networks, and generative foundation
models such as large language models (LLMs) have attracted
considerable interest from academia and industry. This work
considers a novel edge-cloud deployment of foundation models
in 6G networks. Specifically, it aims to minimize the service
delay of foundation models by radio resource allocation and
task offloading, i.e., offloading diverse content generation tasks to
proper LLMs at the network edge or cloud. In particular, we first
introduce the communication system model, i.e., allocating radio
resources and calculating link capacity to support generated
content transmission, and then we present the LLM inference
model to calculate the delay of content generation. After that, we
propose a novel in-context learning method to optimize the task
offloading decisions. It utilizes LLM’s inference capabilities, and
avoids the difficulty of dedicated model training or fine-tuning as
in conventional machine learning algorithms. Finally, the simula-
tions demonstrate that the proposed edge-cloud deployment and
in-context learning method can achieve satisfactory generation
service quality without dedicated model training.

Index Terms—Generative AI, foundation models, 6G edge and
cloud, large language models, service delay, in-context learning

I. INTRODUCTION

Generative AI (GAI) has received considerable attention
recently, which is capable of analyzing complex data dis-
tributions and generating similar new content. Due to its
promising features, existing studies have started exploring
GAI-enabled 6G networks, e.g., GAI for semantic communi-
cation [1] and air-to-ground channel modelling [2]. As a sub-
field of GAI, generative foundation models, especially large
language models (LLMs), have attracted interest from both
academia and industry. For instance, foundation models have
been used for network intrusion detection in [3]. Meanwhile,
telecom companies have started applying foundation models,
e.g., Apple will bring ChatGPT to iPhones with OpenAI, and
Qualcomm has developed a mobile platform to support LLMs.

The above progress of academia and telecom industry has
demonstrated the great potential of GAI foundation models
such as LLMs in 6G networks [1]–[5]. However, despite the
advancement, some fundamental and crucial problems are still
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not investigated, e.g., practical deployment of GAI foundation
models within 6G network architecture, and evaluating the
service delay of these generation services in wireless environ-
ments. In particular, large GAI models such as GPT-4 usually
have billions of parameters, and practical deployment of these
large GAI models is critical to support various applications
in wireless networks, i.e., network intrusion detection, gener-
ation, and management tasks in [3]–[5]. On the other hand,
mobile users may send various service requests over wireless
channels with diverse preferences, e.g., question-answering
tasks need higher accuracy and chatting tasks expect lower
delay. Therefore, using one GAI model, i.e., a single LLM, to
service the requests of all mobile users is impractical, leading
to lower service quality and efficiency.

To this end, we proposed a novel edge-cloud collaboration
deployment strategy. We consider small-scale LLMs such
as Llama3-8B to be deployed at network edge servers of
base stations (BSs), aiming to process tasks efficiently with
lower delay, e.g., chatting, information extraction, and content
summarization. By contrast, large-scale LLMs, e.g., Llama3-
70B and GPT-4, are deployed in the central cloud with
abundant computational resources. These large-scale LLMs
can generate high-quality content for quality-preferred tasks,
such as scientific knowledge, math, and coding-related tasks.

Such an edge-cloud collaboration enables flexible content
generation in wireless networks, but it also involves task
offloading decisions, i.e., generating content at network edge
or offloading tasks to central cloud. Inspired by the recent
progress of LLM-based optimization [6], this work further
explored in-context learning-based decision-making. Specifi-
cally, it uses LLMs to learn from formatted natural language
demonstrations and improve the performance on target tasks
[7]. Compared with existing machine learning (ML) methods,
in-context learning has several advantages: a) Avoiding the
complexity of model training and fine-tuning, a well-known
bottleneck of conventional ML techniques; b) Following hu-
man language instructions to formulate and solve problems,
which is far beyond the capabilities of other ML algorithms.
In-context learning has been explored to address detection,
optimization, prediction tasks, etc [6].

The core contributions of this work are two-fold:
1) Firstly, to the best of our knowledge, this work is the
first to model the service delay of foundation GAI models in
wireless networks, including the communication models for
content transmission, and LLM inference models for content
generation. It provides a specified metric to evaluate the delay
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Fig. 1. GAI model deployment and services in wireless networks.

experienced by mobile users. 2) Secondly, we propose a novel
in-context learning method for generation task offloading. It
avoids the complexity of dedicated model training and fine-
tuning as existing ML techniques, using natural language for
network management. Finally, the simulations demonstrate
that the proposed edge-cloud deployment strategy and in-
context learning-based method can achieve satisfactory gen-
eration service quality for mobile users.

II. SYSTEM MODEL

Fig. 1 presents the proposed system model, in which mo-
bile users can require various LLM services over wireless
networks, e.g., chatting, information extraction and summa-
rization, image generation, etc. Note that these tasks may have
different requirements for generated content qualities. Small-
scale LLMs are deployed at the network edge to process tasks
efficiently with lower delay. By contrast, large-scale LLMs
are deployed in the central cloud to handle tasks with high-
quality requirements. Therefore, the edge servers must make
offloading decisions properly, i.e., processing generation tasks
locally or offloading them to the central cloud.

A. Communication Model for Content Transmission

The communication system model considers a downlink
transmission for the generated content, involving the wireless
transmission delay from BS to end-users, and possible back-
haul delay from the network edge to the central cloud as shown
in Fig. 1. The transmission delay ttransk,i for downloading the
generated content i for user k is

ttrank,i =
ntoken
k,i stoken

Cj,k
+ αk,it

back, (1)

where ntoken
k,i is the LLM output token numbers for input

prompt i, Cj,k is the link capacity for download transmission
between user k and BS j, stoken is the byte size per token
[8].

ntoken
k,i stoken

Cj,k
represents the transmission delay from BSs

to users. tback is the backhaul delay caused by task offloading.
αk,i is the task offloading decision: αk,i = 1 means offloading
tasks to central cloud, while αk,i = 0 indicates network edge
implementation. We assume a fixed tback in (1), which is a
setting used in many task offloading-related studies [9]. The
link capacities Cj,k can be calculated by

Cj,k =
∑

q∈Qj

bqlog(1 +
pj,qgj,q,kzj,q,k∑

j′∈J−j

pj′,q′gj′,q′,k′zj′,q′,k′+bqN0
), (2)

Fig. 2. LLM inference process illustration. (EOS: end-of-sequence).

where Qj is the resource blocks (RBs) set of the jth BS,
bq is the bandwidth of the qth RB, pj,q is the transmission
power of the qth RB, gj,q,k is the channel gain between BS
and user, zj,q,k is a binary indicator to represent whether
the qth RB is allocated to user k, and N0 is the noise
power density. J−j is the set of BSs except jth BS, and∑

j′∈J−j
pj′,q′gj′,q′,k′zj′,q′,k′ is inter-cell interference. We as-

sume orthogonal frequency-division multiplexing is deployed
to avoid intra-cell interference.

B. LLM Inference Model for Content Generation

As shown in Fig. 2, the LLM inference process mainly
consists of prefill phase and decode phase [10]. The user
question is split into smaller tokens, then the LLM processes
the input tokens as a next-token predictor by autoregressive
decoding. Fig. 2 demonstrates that the LLM inference time
can be generally divided into two parts: Time-To-First-Token
(TTFT) refers to the time to generate the first token, and Time-
Per-Output-Token (TPOT) indicates the time to generate each
following token [10]. Therefore, the total generation time for
a prompt i from user k is

tgenk,i = tTTFT + ntoken
k,i tTPOT , (3)

where tgenk,i is the total generation time, tTTFT is TTFT time,
ntoken
k,i is the number of tokens generated for prompt i, and

tTPOT is the TPOT time. LLM is a complicated system with
a huge number of parameters, and tTTFT and tTPOT are
affected by many factors, e.g., model architecture, hardware
constraints, and task types. Therefore, it is extremely difficult
to calculate the exact generation time for each task. However,
(3) provides a practical approach to quantify LLM generation
time since the TTFT and TPOT values of many LLMs can be
easily tested and obtained for evaluation purposes [11].

C. Problem Formulation

This work aims to minimize the total generation and
transmission delay of all K users from BS j in wireless
networks, and meanwhile satisfy the quality requirements of
the generated content. The problem formulation is defined as

min
αk,i,
zj,q,k

K∑
k=1

Ik∑
i=1

(
ttrank,i + αk,it

cloud
k,i + (1− αk,i)t

edge
k,i

)
(4)

s.t. (1) and (2), (4a)
zj,q,k, αk,i ∈ {0, 1}, (4b)

tedgek,i = tTTFT,edge + ntoken
k,i tTPOT,edge, (4c)

tcloudk,i = tTTFT,cloud + ntoken
k,i tTPOT,cloud, (4d)

τk,i ≤ αk,iτ
cloud + (1− αk,i)τ

edge, (4e)
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Fig. 3. LLM-enabled in-context learning for task offloading.

where αk,i is the task offloading decision, zj,q,k is the RB
allocation decision defined in (2), and Ik is the total number
of service requests from user k. We assume a small-scale LLM
is deployed at the network edge as in constraint (4c), in which
tedgek,i , tTTFT,edge, and tTPOT,edge represent total generation
time, TTFT, and TPOT values. Similarly, tcloudk,i , tTTFT,cloud,
and tTPOT,cloud are defined for the cloud LLM in (4d). In
addition, the quality of the generated content is also a crucial
metric to evaluate generation services. (4e) is the generation
quality constraint, indicating that the quality index of selected
edge LLM τedge or cloud LLM τ cloud should be higher than
the user requirement τk,i1.

Finally, (4) includes both radio resource allocation and
task offloading decisions, in which zj,q,k for radio resource
allocation and αk,i for task offloading. For radio resource
allocation, we apply a classic proportional fairness algorithm
because: 1) proportional fairness is a practical method that has
been widely used in many existing studies; 2) this work aims
to understand generative foundation model service properties,
and it is reasonable to apply a well-known resource allocation
method to better focus on foundation models. For task offload-
ing, we propose an in-context learning-based task offloading
approach in the following Section III.

III. IN-CONTEXT LEARNING FOR TASK OFFLOADING

In-context learning refers to the process of learning from
formatted natural language-based task descriptions and exam-
ples, aiming to improve the performance of target tasks [7].
Considering a query input x and possible candidate answers
Y = {y1, y2, ..., y|Y|}, a set of examples are provided as
E = {E1, E2, ..., E|E|}, in which each Ee ∈ E consists
of input-output pairs as Ee = (xe, ye). The probability of
generating a specific output y∗ is

Pr(y∗|x) ≜ fLLM (x, y∗, {E1, E2, ..., E|E|}, D), (5)

where fLLM (·) is a scoring function and D is the task
description. Then the final output answer ŷ is the candidate
answer with the highest probability

ŷ = argmax
y∈Y

(Pr(y|x)). (6)

1The generation quality index can be obtained by testing LLMs on task
datasets, e.g., Chatbot Arena, Multi-task Language Understanding, etc [11].

The above (5) and (6) prove that the output ŷ depends on
the input x, task description D, and example set E . In this
work, LLM outputs ŷ refers to the decision between local
implementation and offloading, the input x involves service
types and the estimated output token size, D is the offloading
task description, and E is a set of previous examples, which
will be introduced in following subsections.

A. Prompting System Design

The overall organization of the proposed LLM-enabled in-
context learning is shown in Fig. 3 with the following steps:

Step 1: Task description. Based on network environments,
the task description D in (5) is first defined by

D = {Task goal,Task definition,Rules}, (7)

in which the “Task goal” specifies the target problem with two
decision variables “local” and “offload”. The “Task definition”
indicates the status variables affecting offloading decisions.
Here we consider “Service types” and “Estimated output token
size”, which also means the input x in (5) is

x = {Service types,Estimated output token size}. (8)

Additionally, extra “Rules” are applied to LLMs, e.g., replying
“local” or “offload” only to improve the output accuracy.

Step 2: Example design. The task description D will be
combined with the example set E = {E1, E2, ..., E|E|} as
a meta prompt input to the LLM, producing task offloading
decisions α. The example Ee ∈ E is defined by

Ee{Keywords : (w1, w2, ..., wW),Decision: Local/Offload,
Reward : r, Evaluation: Good/Bad decision.}

(9)

in which the “Keywords” refer to the values of “Service types”
and “Estimated output token size” defined in (8). Inspired by
reinforcement learning, a reward metric is defined to evaluate
the system performance by jointly considering service delay
and quality requirements.

r = TTarget − ttotal − rpenalty (10)

where TTarget is the target delay, and ttotal is the objective
function defined in (4) and ttotal = ttrank,i − αk,it

cloud
k,i − (1−

αk,i)t
edge
k,i . Here rpenalty is a penalty item, aiming to balance

the service delay and generated content quality. rpenalty is
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Fig. 4. The overall optimization procedure of the proposed technique

a preset positive value if the constraint in (4) is violated. A
high rpenalty value means strict requirements on generated
content quality, while a lower rpenalty value allows lower
generation quality to achieve lower service delay. Otherwise,
if all constraints are satisfied in (4), rpenalty = 0. Such a
definition is also a widely used approach in reinforcement
learning studies to handle optimization constraints. Therefore,
(10) provides a comprehensive metric to minimize the total
delay under the constraints.

Step 3: Experience evaluation and replay. Given the
offloading decision, the current network operation results
become a new experience example Ecurrent, which will be
sent to the evaluator module as in Fig. 3. Specifically, Ecurrent

is considered a bad decision if the constraints in (4) are
not satisfied; otherwise, Ecurrent is sent to the prioritized
experience replay module for further evaluation, which will
be introduced in the following Subsection III-B.

Step 4: Meta prompt updating. The experience pool in
Step 3 will serve as a new example set Enext, and the LLM
will generate the next decision using the same task description
D and the updated example set Enext. Steps 3 and 4 will be
repeated until algorithm performance converges, which will be
analyzed in the following Fig. 4.

B. Prioritized Experience Replay and Exploration Strategies

The above Steps 3 and 4 show that properly updating the
experience pool is crucial, and this subsection will present
two key techniques, namely prioritized experience replay and
epsilon-greedy exploration, aiming to identify the most useful
examples for experience replay. In particular, Fig. 3 shows that
the prioritized experience replay includes two rules:

1) If Ecurrent is a new example, which means that
Ecurrent{Keywords:(w1, w2, ..., wW)} ≠ Ee{Keywords:(w1,
w2, ..., wW)} for ∀ Ee ∈ E , then Ecurrent is always consid-
ered as a “Good decision” since there is no existing example
of this condition in the current experience pool E .

2) If ∃Ee ∈ E that has the same keyword values as
Ecurrent with Ee{Keywords:(w1, w2, ..., wW)} = Ecurrent

{Keywords:(w1, w2, ..., wW)}, then we will compare their
reward values. If Ee has a higher reward than Ecurrent, then
Ecurrent is considered a “Bad decision” and the experience
pool E remains unchanged. Otherwise, if Ecurrent has a higher
reward, then Ecurrent becomes a better example as a “Good
decision”. Ee will be replaced by Ecurrent in the experience
pool, and a new example set Enext is generated.

Fig. 4 summarizes the overall procedure of the proposed
techniques. We apply the well-known epsilon-greedy policy to
balance exploration and exploitation, which is a fundamental
problem in many optimization tasks. Specifically, actions are

randomly selected with probability ϵ; otherwise, LLM will
make decisions. Combining the epsilon-greedy policy with
the proposed experience replay technique can send the best
examples found to LLMs, and also explore new examples
to improve the experience pool. Therefore, with plenty of
explorations, the examples in the experience pool will be
constantly improved, and the LLM output will converge if
no better examples can be found2.

Finally, we present 3 baseline algorithms. Baseline 1: Latest
experience-based in-context learning, using the latest expe-
rience as examples in the prompt. Baseline 2: In-context
learning without exploration, and all decisions are made by
LLMs. Baseline 3: We consider deep reinforcement learning
(DRL) as an optimal baseline since DRL techniques have been
very widely applied to solve various network optimization
problems, in which the state is defined by (8), the action is
offloading decision, and the reward is shown as (10).

IV. PERFORMANCE EVALUATION

A. Simulation Settings

We assume 20 users are randomly distributed in a cell based
on 3GPP urban networks. The mobile users have two kinds
of generation tasks: regular tasks such as chatting, translation,
and summarization, and quality-preferred tasks such as sci-
entific knowledge reasoning and coding. Such quality-based
task classification aligns well with the evaluation schemes for
LLMs, e.g., Chatbot Arena and Multi-task Language Under-
standing (MMLU). The average output size is 1,000 tokens,
and each token corresponds to about 4 bytes according to an
OpenAI report [8]. We evaluate 2 LLMs for decision-making:
Llama3-8B as a small-scale model that can be deployed at the
network edge and GPT-4o as the latest large-scale LLM model
as a benchmark for LLM-enabled methods. For the network
settings, we assume the edge LLM’s TTFT and TPOT values
are 0.23 and 1/75 second, while the values for the cloud LLM
are 0.42 and 1/32 [11].

B. Simulation Results

Fig. 5(a) shows the system reward of different tasks using
Llama3-8B and GPT-4o, in which all tasks converge to a stable
reward after exploration. Here, the reward values indicate the
overall service performance as defined in (10). Llama3-8B and
GPT-4o also achieve comparable performance as conventional
DRL-based optimal baseline, demonstrating the potential of
LLM-based optimization techniques. In addition, Fig. 5(b)
presents the service success rate for quality-preferred tasks,
which means that the service score constraint in (4) should be
fulfilled. It shows that the proposed in-context learning method
can offload tasks properly to satisfy user requirements.

We further compare the experience replay and exploration
methods. in Fig. 5(c). It shows that the proposed prioritized
experience replay method can obtain comparable performance
as optimal DRL baseline values. Specifically, epsilon-greedy

2Similar assumptions can be found in the convergence analyses of classic
tabular-based Q-learning, e.g., “Q-learning is guaranteed to converge when
visiting each state-action tuple infinitely times”.
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(a) System reward comparison of different tasks
using Llama3-8B and GPT-4o.

(b) Service success rate of quality-preferred tasks
using using Llama3-8B and GPT-4o.

(c) Comparisons under different experience re-
play and exploration methods using Llama3-8B.

(d) Average service delay with different user
numbers using different LLM combinations.

(e) Average service delay with different prompt
size using different LLM combinations.

(f) Average service delay with different tasks
proportions using different LLM combinations.

Fig. 5. Simulation results and comparisons

exploration can try different decisions and collect good ex-
amples. These good examples will then be used in prioritized
experience replay to guide the future decisions of LLMs. By
contrast, latest experience reply and no-exploration methods
present lower rewards as shown in the lower part of Fig. 5(c).

Finally, Figs. 5(d), 5(e) and 5(f) present the service de-
lay of various LLMs under different user numbers, size of
output tokens, and task distributions. In particular, when the
proportion of quality-preferred tasks increases, these genera-
tion tasks must be offloaded to large-scale LLMs at cloud,
leading to higher service delays. Meanwhile, Gemma 7B +
Gemini 1.5 Pro can achieve the lowest overall delay than
other combinations. This is because of the low TTFT values
of these two LLMs, which are 1/155 second for Gemma
7B and 1/58 second for Gemini 1.5 Pro. Other LLMs have
much higher values, i.e., 1/89 second for Llama2-7B and 1/40
second for Llama2-70B [11]. In addition, some supplementary
experiment results and analyses can be found in [12].

V. CONCLUSION

GAI is a promising technique for future 6G networks, and
this work investigates the generation task offloading problems
in 6G edge-cloud. It proposes a novel in-context learning
method for generation task offloading, and the simulations
demonstrated that the proposed technique can achieve sat-
isfactory generation service quality. It is worth noting that
such an edge-cloud deployment method may also increase the
vulnerabilities of LLMs, e.g., inference and extraction attacks.
In the future, we will explore secure and robust deployment
strategies for LLMs in 6G networks, better guaranteeing the
generation service reliability and quality.
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