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Abstract—Large language models (LLMs) have received con-
siderable attention recently due to their outstanding comprehen-
sion and reasoning capabilities, leading to great progress in many
fields. The advancement of LLM techniques also offers promising
opportunities to automate many tasks in the telecommunication
(telecom) field. After pre-training and fine-tuning, LLMs can
perform diverse downstream tasks based on human instructions,
paving the way to artificial general intelligence (AGI)-enabled 6G.
Given the great potential of LLM technologies, this work aims
to provide a comprehensive overview of LLM-enabled telecom
networks. In particular, we first present LLM fundamentals,
including model architecture, pre-training, fine-tuning, infer-
ence and utilization, model evaluation, and telecom deployment.
Then, we introduce LLM-enabled key techniques and telecom
applications in terms of generation, classification, optimization,
and prediction problems. Specifically, the LLM-enabled gen-
eration applications include telecom domain knowledge, code,
and network configuration generation. After that, the LLM-
based classification applications involve network security, text,
image, and traffic classification problems. Moreover, multiple
LLM-enabled optimization techniques are introduced, such as
automated reward function design for reinforcement learning
and verbal reinforcement learning. Furthermore, for LLM-aided
prediction problems, we discussed time-series prediction models
and multi-modality prediction problems for telecom. Finally, we
highlight the challenges and identify the future directions of
LLM-enabled telecom networks.

Index Terms—Large language model, telecommunications, gen-
eration, classification, prediction, optimization.

I. INTRODUCTION

While 5G networks have entered the commercial deploy-
ment stage, the academic community has started the explo-
ration of envisioned 6G networks. In particular, 6G networks
are expected to achieve terabits per second (Tbps) level data
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rates, 107/km2 connection densities, and lower than 0.1 ms
latency [1]. To achieve these goals, the International Telecom-
munication Union (ITU) has defined six key use cases for
envisioned 6G networks [2]. Specifically, three cases are exten-
sions of IMT-2020 (5G), namely immersive communication,
hyper-reliable and low-latency communication, and massive
communication, and the other three novel usage cases are
ubiquitous connectivity, integrated sensing and communica-
tion, and AI and communication. These novel techniques have
shown satisfactory performance towards 6G requirements, but
the complexity of network management also significantly
increased. From 3G, 4G LTE to 5G and envisioned 6G
networks, telecommunication (telecom) networks have become
a complicated large-scale system, including core networks,
transport networks, network edge, and radio access networks
[3]. Moreover, 6G ubiquitous connectivity aims to address
presently uncovered areas, e.g., rural and sparsely populated
areas, by integrating other access systems such as satel-
lite communications. In addition, 6G integrated sensing and
communication is designed to improve applications requiring
sensing capabilities, i.e., assisted navigation, activity detection,
and environmental monitoring. Despite the potential benefits,
such highly integrated network architecture and functions may
lead to a huge burden on 6G network management, including
network configuration and troubleshooting, product design
and coding, standard specification development, performance
optimization and prediction, etc.

To handle such complexity, machine learning (ML) has be-
come one of the most promising solutions, and there have been
a large number of studies on artificial intelligence (AI)/ML-
enabled wireless networks, e.g., reinforcement learning-based
network management [4], deep neural network-enabled chan-
nel state information (CSI) prediction [5], and federated learn-
ing for distributed model training in wireless environments [6].
For example, convex optimization has been applied to optimize
network performance, but it requires problem-specific trans-
formation for convexity. By contrast, reinforcement learning
will transform the problem into a unified Markov decision
process (MDP), and then interact with the environment to
explore optimal policies. Compared with conventional opti-
mization algorithms [7], reinforcement learning overcomes the
complexity of dedicated problem reformulation, and can better
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Fig. 1. Organization and key topics covered in this work.

handle environmental uncertainties, e.g., the growing diversity
of user preferences, and more distributed and heterogeneous
resources in future telecom networks. These studies have
demonstrated the importance of incorporating ML to improve
the efficiency, reliability, and quality of telecom services.

Recently, large language model (LLM) techniques have at-
tracted considerable interest from both academia and industry.
Unlike previous ML algorithms, these large-scale models with

a huge amount of parameters have shown versatile compre-
hension and reasoning capabilities in various fields such as
health care [8], law [9], finance [10], education, and so on
[11]. For instance, Wu et al. introduced a BloombergGPT
model that is trained on a wide range of financial data with 50
billion parameters, and the Med-PaLM2 developed by Google
achieves 86.5% correct rate on the medical question answering
dataset [8]. LLM technologies have many promising fea-
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tures such as in-context learning (ICL), step-by-step learning,
and instruction following [12]. Existing studies have shown
that LLMs can answer telecom-domain questions, generate
troubleshooting reports, develop project code, and configure
networks, which will significantly lower the difficulty of 6G
ubiquitous connectivity management. Meanwhile, for 6G inte-
grated sensing and communication, LLMs can understand and
process multi-modal data, e.g., text, satellite or street camera
images, 3D LiDAR maps and videos. It provides a promising
approach to simulate and understand the 3D wireless signal
transmission environment.

Despite the great potential, LLM’s real-world application
is still at a very early stage, especially for domain-specific
scenarios. For instance, telecom is a broad field that includes
various knowledge domains, e.g., signal transmissions, proto-
cols, network architectures, devices, and different standards.
LLM is expected to properly understand and generate content
that aligns with real-world details and specific requirements
of telecom applications [13]. However, such specific telecom-
related requirements are rare in the existing knowledge base of
general-domain LLMs. Therefore, applying a general-domain
LLM directly to telecom tasks may lead to poor performance.
Meanwhile, fine-tuning LLMs on telecom datasets may im-
prove LLM’s performance of domain-specific tasks, but the
telecom-specific dataset collection and filtering still require
careful design and evaluation. In addition, many telecom tasks
require multi-step planning and thinking, e.g., a simple coding
task can include multiple steps, indicating dedicated prompting
and analyses from the telecom perspective [14].

Given the above opportunities and challenges, this work
presents a comprehensive survey of LLM-enabled telecom
networks. Different from existing studies that focus on one
specific aspect such as edge intelligence [15], [16], grounding
and alignment [17], this work provides a comprehensive
survey on fundamentals, key techniques, and applications of
LLM-enabled telecom. To be specific, this work focuses on
generative models that were originally developed for language
tasks, i.e., language models, and it also involves more diverse
techniques and broad application scenarios such as optimiza-
tion and prediction problems. In this survey, the term “foun-
dation models” refers to models specifically developed from
scratch for applications that are beyond pure language-related
tasks, such as the prediction foundation models in Section VII-
B, while “LLM-enabled” or “LLM-aided” approaches denote
methods that repurpose existing pre-trained language models
for telecom tasks. Moreover, when referring to LLMs, it means
that the inputs to the model are purely text, and the model
generates purely text as outputs, even if the model can accept
inputs in other modalities, such as GPT-4V and GPT-4o. When
discussing the multi-modal inputs, we explicitly describe them
as multi-modal large language models or multi-modal LLMs.

Although LLM development is originally motivated by
natural language tasks, it is worth noting that there have
been diverse state-of-the-art explorations that are beyond
the conventional language processing tasks, e.g., coding and
debugging [18], recommendation [19], LLM-enabled agents

[20], instruction-based optimization [21], network time-series
prediction and decision making [22], etc. These LLM-inspired
techniques have become crucial pillars of LLM studies, and
exploring these techniques is crucial to take full advantage
of LLM capabilities. Fig.1 presents the organization of this
work, in which the left side indicates the telecom scenarios and
demand, and the right side shows the LLM-enabled techniques.
To better present the detailed application scenarios, the bottom
of Fig.1 shows telecom environments that include radio access
networks, network edge, central cloud, and other network
elements such as regular users, malicious users, mmWave
beam, environment image sensing, RISs, backhaul traffic, etc.
Meanwhile, we categorize key telecom applications into gener-
ation, classification, optimization, and prediction problems to
better distinguish different scenarios and customized designs1

In particular, we focus on the following topics:
1) LLM fundamentals: Understanding LLM fundamentals

is the prerequisite for developing advanced applications in
telecom networks [11]. Compared with existing studies [15]–
[17], this work presents a more comprehensive overview of
the model architecture, pre-training, fine-tuning, inference and
utilization, and evaluation. Additionally, it presents different
approaches to deploy LLMs in telecom networks, such as
central cloud, network edge, and mobile LLM [16]. It further
analyzes LLM fundamentals from the telecom application per-
spective, e.g., training or fine-tuning telecom-specific LLMs,
and the importance of prompting and multi-step planning
techniques for telecom tasks.

2) LLM for generation problems in telecom: Gener-
ating desired content is the most common usage of LLM,
and here we investigate the applications to specific telecom
scenarios. In particular, it involves answering telecom-domain
questions, generating troubleshooting reports, project coding,
and network configuration. It shows that LLM’s generation
capabilities are particularly useful in text and language-related
telecom tasks to save human effort, e.g., automated code
refactoring and design [14], recommending troubleshooting
solutions [23], and generating network configurations [24].

3) LLM-based classification for telecom: Classification is
a common task in the telecom field, and we present LLM-
enabled network attack classification and detection, telecom
text, image, and traffic classification problems. For instance,
there have been many studies on visioned-aided blockage
prediction and beamforming for 6G networks [25], and some
LLM can provide zero-shot image classification capabilities,
overcoming the training difficulties of conventional algorithms
in complicated signal transmission environments [26].

4) LLM-enabled optimization techniques: Optimization
techniques are of great importance to telecom networks, e.g.,
resource allocation and load balancing [7], and LLM offers
new opportunities [7]. In particular, we introduce LLM-aided
automated reward function design for reinforcement learning,

1Note that although the classification, optimization, and prediction capa-
bilities are all based on the LLM’s inference and generation capabilities, this
organization can significantly reduce the reader’s difficulty in understanding
the LLM’s potential for telecom applications.
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verbal reinforcement learning, LLM-enabled black-box opti-
mizer, end-to-end convex optimization, and LLM-aided heuris-
tic algorithm design. For example, reinforcement learning has
been widely used for network optimization, but the reward
functions are usually manually designed with a trial-and-error
approach [27]. LLM can provide automated reward function
designs, and such an improvement can significantly promote
reinforcement learning applications in the telecom field.

5) LLM-aided prediction in telecom: Prediction tech-
niques are crucial for telecom networks, such as CSI pre-
diction [5], prediction-based beamforming [25], and traffic
load prediction [36]. Existing studies have started exploring
one-model-for-all time-series models. After pre-training on a
large corpus of diverse time-series data, such a model can
learn the hidden temporal patterns, and then generalize well
across different prediction tasks without extra training. We
will first introduce how to pre-train foundation models, and
then present frozen pre-trained and fine-tune-based LLMs. In
addition, the potential of multi-modal LLM is discussed for
telecom prediction tasks.

6) Challenges and future directions: Finally, we identify
the challenges and future directions of LLM-empowered tele-
com. The challenges focus on telecom-domain LLM training,
practical LLM deployment, and prompt engineering for tele-
com applications. The future directions include LLM-enabled
planning, model compression and fast inference, overcoming
hallucination problems, retrieval augmented-LLM, and eco-
nomic and affordable LLMs.

In summary, the main contribution of this work is that we
provide a comprehensive survey of the principles, key tech-
niques, and applications for LLM-enabled telecom networks,
ranging from LLM fundamentals to novel LLM-inspired gen-
eration, classification, optimization and prediction techniques
along with telecom applications. This work covers nearly
20 telecom application scenarios and LLM-inspired novel
techniques, aiming to be a roadmap for researchers to use
LLMs to solve various telecom tasks. The rest of this paper is
organized as Fig. 1. Section II discusses related surveys, and
Section III presents LLM fundamentals. Sections IV, V, VI,
and VII focus on generation, classification, optimization, and
prediction problems and telecom applications, respectively.
Finally, Section VIII identifies the challenges and future di-
rections, and Section IX concludes this work.

II. RELATED SURVEYS

Table I compares this work with existing studies [15]–[17],
[28]–[35], including LLM fundamental techniques such as pre-
training and fine-tuning, and other key topics ranging from
question answering to multi-modality. Firstly, Table I shows
that most existing studies focus on the fundamental techniques
of LLMs, e.g., pre-training LLMs for telecom tasks in general
[15], [16], [32]–[35]. LLM deployment is discussed in many

existing studies, including central cloud [15], [31], network
edge [16], and mobile execution [17]. Due to the storage and
computational resources constraint at the network edge, Lin et
al. also summarized various techniques in [16] that can be used

to improve the LLM training efficiency at the network edge,
such as parameter-efficient fine-tuning, split edge learning, and
quantized training.

Meanwhile, researchers have investigated various network
application scenarios for LLM and generative AI (GAI), such
as integrated satellite-aerial-terrestrial networks [32], secure
physical layer communication [37], semantic communica-
tion [38], and vehicular networks [39]. For instance, Javaid
et al. studied the application of LLMs to integrated satellite-
aerial-terrestrial networks, including resource allocation, traffic
routing, network optimization, etc [32]. Huang et al. presents a
general overview of LLM for networking, involving network
design, configuration, and security [35]. Du et al. present a
novel concept named “AI-generated everything”, discussing
the interactions between (GAI) and different network lay-
ers [40]. In addition, sensing has become an important part
of future 6G networks, and the multi-modal LLM are dis-
cussed in several existing studies, e.g., integrated sensing and
communication with LLM [17], [29], multi-modal input to
LLMs for intelligent sensing and communication [30], and
multi-modal sensing [31]. These studies are very valuable
explorations of LLM-enabled telecom networks by focusing on
model training and deployment. However, LLM techniques are
rapidly progressing and many LLM-inspired novel techniques
and applications have been recently proposed. This work is
different from existing studies in the following aspects:

1) In terms of LLM fundamentals, we provide compre-
hensive overviews and analyses, ranging from model archi-
tecture and pre-training to LLM evaluation and deployment.
For instance, prompt engineering is of great importance for
using LLM technology, but some crucial techniques such as
chain-of-thought (CoT) [41] and step-by-step planning are
not discussed in many existing studies [15]–[17], [28]–[31].
Understanding these prompt design skills is the prerequisite
for advanced telecom applications. By contrast, this work
provides detailed analyses of chain-of-thought along with
telecom applications, e.g., LLM-aided automated wireless
project coding with multi-step prompting and thinking [14].
Meanwhile, we also systemically analyzed the features of
different LLM deployment strategies in telecom, while existing
studies usually involve one single deployment [15]–[17], [31].

2) In terms of LLM-inspired techniques, this work presents
the most state-of-the-art novel algorithms and designs. For
instance, reinforcement learning has been widely applied to
telecom optimization problems, but the reward function design
requires considerable human effort [27]. Existing studies have
shown that LLM can be used for automated reward function
design, achieving a comparable performance as human manual
designs [42]–[44]. Such a technique may bring revolutionary
changes to reinforcement learning techniques, which have
great potential for telecom applications. In addition, time-
series LLM is also a promising technique for telecom, enabling
one-model-for-all prediction [45]. However, these novel tech-
niques are not mentioned in most existing studies.

3) In terms of telecom applications, we systematically sum-
marize various LLM application scenarios, including question
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TABLE I
COMPARISON OF THIS WORK WITH EXISTING SURVEYS

Ref.

LLM fundamental techniques Generation applications Classification applications Optimization techniques
Prediction
techniques

Archit-
ecture

Pre-
training

Fine-
tuning

Infe-
rence

Evalu-
ation

Deploy-
ment

Question
answering

Troubles-
hooting

Coding
Network
config.

Network
attacks

Text Image
Network
traffic

LLM
-aided RL

Black-
box

Convex Heuristic
Time series

LLM
Multi-

modality

[15] ✓ ✓

[16] ✓ ✓

[17] ✓ ✓

[28] ✓ ✓ ✓ ✓ ✓ ✓

[29] ✓ ✓ ✓

[30] ✓ ✓

[31] ✓ ✓ ✓

[32] ✓ ✓ ✓ ✓ ✓

[33] ✓ ✓ ✓ ✓

[34] ✓ ✓ ✓ ✓ ✓

[35] ✓ ✓ ✓ ✓

Our
work

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 Multi-modality is discussed in several existing studies but not from the prediction perspective. Table I divides key topics from LLM fundamentals to
optimization and prediction to better align with the organization of our work.

TABLE II
SUMMARY OF EXISTING GENERAL AND DOMAIN-SPECIFIC LLMS.

Domain Model Size Pre-train Latest Update

General

GPT-4-Turbo - - Mar 2024
Claude-3 Opus - - Mar 2024
Gemini-1 Ultra - - Dec 2023
Mistral-Large - - Feb 2024

Llama-2 70B 10T tokens Jul 2023
Qwen-1.5 72B - Feb 2024
DeepSeek 67B 2T tokens Jan 2024

Baichuan-2 Turbo 13B - Sep 2023

Healthcare
MedGPT - - Jul 2021

ChatDoctor 7B 100K Jun 2023
Med-PaLM 540B 760B Dec 2022

Finance
finBERT 110B 1.8M Aug 2019
FinMA 30B 1T tokens Jun 2023

BloombergGPT 50B 569-770B tokens Dec 2023

Time Series
TabLLM 3B 50,000 rows Mar 2023

LLMTime 70B - Oct 2023
TIME-LLM 7B - Jan 2024

Autonomous
driving

Driving with LLMs 7B 110k Oct 2023
Dilu - - Feb 2024

DriveGPT4 70B 112k Mar 2024

Law
LexiLaw 6B - May 2023
JurisLMs 13B - July 2023
ChatLaw 13B 980k July 2023

Recommen-
dation

M6-Rec 300M 1G May 2022
TallRec 7B 100 samples Oct 2023

AgentCF 175B 20k samples Oct 2023

answering, network troubleshooting, coding, network config-
uration, network attack classification and security, text and
image classification, etc. Compared with existing studies,
we presented more comprehensive overviews and analyses
of using LLM techniques to solve various problems in the
telecom domain. For each application, this work provides
technical details such as framework, pre-training steps, and
prompt designs, which are more informative than existing
studies that focus on general system-level designs.

Moreover, Table II summarizes various general and domain-

specific LLMs, demonstrating that LLMs have received con-
siderable attention across many fields. Researchers have
trained various domain-specific LLMs for their application
scenarios, including healthcare [46], finance [10], time series
[47], autonomous driving [48], and recommendation systems
[49], etc. For instance, DriveGPT4 is designed to provide
interpretable end-to-end autonomous driving [48]. LLM is also
used for the automated design of reward functions in robot
control [44], achieving better performance than human manual
designs. Thus, given the rapid progress and great potential of
LLMs, a comprehensive survey is expected to summarize the
latest and potential applications of LLMs in the telecom field.
To this end, this work answers such a question: What are
the most state-of-the-art techniques inspired by LLMs, and
how can these techniques be used to solve telecom domain
problems? The answer to this question is crucial for building
intelligent next-generation telecom networks.

III. LLM FUNDAMENTALS

This Section will introduce LLM fundamentals, and the
overall organization is shown in Fig.2. It presents a thor-
ough overview of LLM fundamentals, including the model
architecture, pre-training, fine-tuning, inference and utilization,
and model evaluation. We further discuss how LLMs can be
deployed in telecom networks such as central cloud, network
edge, and mobile devices. Finally, we analyze LLM fundamen-
tals from the telecom application perspective, e.g., training or
fine-tuning LLMs for the telecom domain.

A. Model Architecture

The fundamental component of contemporary LLMs is
the transformer scheme [50], which leverages an attention
mechanism to capture global dependencies between inputs
and outputs. Transformers process raw inputs by tokenizing
them and applying embeddings and positional encodings. The
vanilla transformer architecture comprises two main compo-
nents: the encoder and the decoder. The encoder’s role is to
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extract features and understand the relationships among all
input tokens. It employs self-attention, also referred to as bidi-
rectional attention, allowing each token to attend to every other
token in both directions. Conversely, the decoder is responsible
for producing the output sequence while taking into account
the input sequence and previously generated tokens. It initially
applies a masked attention mechanism, known as causal atten-
tion, ensuring that the current token only attends to previously
generated tokens. Additionally, the decoder employs cross-
attention, where the query comes from the decoder, and the
key and value are from the encoder, enabling the decoder to
integrate information from both the input sequence and the
already generated tokens. Beyond the basic version of the
attention mechanism, various variants are developed to capture
the different relationships among tokens, such as multi-head
attention [50], multi-query attention [51], and grouped-query
attention [52]. Current architectures can be classified into three
distinct categories: encoder-only architecture, encoder-decoder
architecture, and decoder-only architecture.

1) Encoder-only architecture: Models with an encoder-
only structure solely comprise an encoder. These models
are tailored for language understanding tasks, where they
extract language features for downstream applications such as
classification. A prominent example is bidirectional encoder
representations from transformers (BERT) [53]. BERT is pre-
trained with two main objectives: the masked language model
objective, which aims to reconstruct randomly masked tokens,
and the next sentence prediction objective, designed to as-
certain if one sentence logically follows another. There have
been many variants of this model, such as RoBERTa [54],
which enhances the performance on downstream tasks2, and
ALBERT [55] that introduces two parameter-reduction tech-
niques to accelerate BERT’s training process.

2) Encoder-decoder architecture: The foundational trans-
former block employs an encoder-decoder architecture,
wherein the encoder relays keys and values generated by
its self-attention module to the decoder for cross-attention
processing. For example, the study in [56] introduces the
text-to-text transfer transformer, a unified framework that
reformulates all text-based language tasks into a text-to-text
format, thereby facilitating the exploration of transfer learning
within natural language processing (NLP). BART is another
well-known model with standard transformer architecture [57],
which employs a denoising autoencoder approach for pre-
training sequence-to-sequence models. It introduces arbitrary
noise into text and is trained to reconstruct the original con-
tent, effectively combining elements of BERT’s bidirectional
encoding and GPT’s causal decoding methodologies.

3) Decoder-only architecture: Decoder-only architectures
specialize in unidirectional attention, allowing each output
token to attend only to its past tokens and itself. Both prefix
and output tokens undergo identical processing within the
decoder. Decoders are further distinguished based on their

2Here downstream tasks refer to a series of target tasks that can be solved
by the pre-trained model, e.g., text classification, natural language inference.

Fig. 2. Organization and key topics of Section III.

attention mechanisms into causal and non-causal decoders.
In causal decoders, every token is restricted to attending
to its past tokens and itself; in non-causal decoders, prefix
tokens can attend to all tokens within the prefix. Causal
decoders are predominantly adopted in popular LLMs, such
as the GPT series [58], PaLM [59], and LLaMA [60]. Non-
causal decoders [61] resemble encoder-decoder frameworks in
their ability to bidirectionally process the prefix sequence and
autoregressively generate output tokens sequentially.

Note that LLM is a complicated system, and there are mul-
tiple approaches to apply LLMs to the telecom field, ranging
from pre-training and fine-tuning, to prompting. For instance,
pre-training an LLM from scratch by using telecom-domain
datasets, fine-tuning a general domain LLM for specific tele-
com tasks, or using general domain LLMs by prompting
directly. The following will introduce the key procedures and
features of each approach, in which Sections III-B, III-C, and
III-D introduce the procedures of pre-training, fine-tuning, and
prompting, respectively.

B. LLM Pre-training

The aim of pre-training language models is to predict the
next word within a sentence. After being trained on extensive
datasets, LLMs exhibit emergent capabilities in comprehen-
sion and reasoning. This subsection will introduce dataset
collection, preprocessing, and model training techniques.

1) Dataset collection and preprocessing: Datasets for
training language models fall into two primary categories:
general and specialized. General datasets comprise a diverse
range of sources, such as web pages, literature, and con-
versational corpora. For instance, web pages like Wikipedia
[62] can contribute to a language model’s broad linguistic
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understanding. Meanwhile, literary works also serve as a rich
reservoir of formal and lengthy texts [63]. These materi-
als are crucial for teaching LLMs complex linguistic con-
structs, facilitating the modelling of long-range dependencies.
Specialized data involves scientific texts and programming-
related data. For example, scientific literature comprises a
wealth of formal writing imbued with domain-specific knowl-
edge, encompassing academic papers and textbooks. On the
other hand, programming data drawn from online question-
answering platforms like Stack Exchange [64], along with
public software repositories such as GitHub, provide raw ma-
terial rich with code snippets, comments, and documentation.
Incorporating these specialized texts into the training of LLMs
can significantly improve LLM’s performance in reasoning
and domain-specific knowledge applications. However, before
pre-training, it is critical to preprocess the collected datasets,
which often contain noisy, redundant, irrelevant, and poten-
tially harmful data. The preprocessing procedure may include
quality filtering, de-duplication [59], privacy redaction [65],
and tokenization [66].

2) Model training: In the model training process, two
pivotal hyperparameters are the batch size and the learning
rate. For the pre-training of LLMs, a substantial batch size is
required, and recent studies suggest incrementally enlarging
the batch size to bolster the stability of the training pro-
cess [59]. In terms of learning rate adjustments, a widely
used strategy is to start with a warm-up phase and then
succeed with a cosine decay pattern. This approach helps
in achieving a more controllable learning rate schedule. To
enhance the training scalability, several key techniques are
proposed. For instance, 3D parallelism encompasses data
parallelism, pipeline parallelism, and tensor parallelism. Data
parallelism involves the replication of the model’s parameters
and optimizer states across multiple GPUs [67], allocating
to each GPU a subset of data to process and subsequently
aggregate the computed gradients. Pipeline parallelism, as
detailed in [68], assigns distinct layers of an LLM to various
GPUs, allowing the accommodation of larger models within
the confines of GPU memory. Tensor parallelism operates on
a similar premise by decomposing the tensors [69], especially
for the parameter matrices of LLM, facilitating the distribution
and computation across multiple GPUs. Meanwhile, ZeRO
is also a useful technique [70], which conserves memory by
retaining only a portion of the model’s data on each GPU. The
remainder of the data is accessible across the GPU network, as
needed, effectively addressing memory redundancy concerns.

C. LLM Fine-tuning

Fine-tuning refers to the process of updating the parameters
of pre-trained LLMs to adapt to domain-specific tasks. Al-
though the pre-trained LLM already has vast language knowl-
edge, they lack specialization in specific areas. Fine-tuning
overcomes this limitation by allowing the model to learn from
domain-specific datasets, making the LLM more effective on
specific applications. This subsection will introduce two fine-
tuning strategies: instruction and alignment tuning.

1) Instruction tuning: Instruction tuning is a method for
fine-tuning pre-trained LLMs using a collection of natural
language-formatted instances. This technique aligns closely
with supervised fine-tuning and multi-task prompted train-
ing, enhancing the LLM’s ability to generalize to unseen
tasks, even in multilingual contexts [71]. The process involves
collecting or constructing instruction-formatted instances and
employing these to fine-tune LLMs in a supervised manner,
typically using sequence-to-sequence loss for training. Models
like InstructGPT and GPT-4 have demonstrated the effective-
ness of instruction tuning in meeting real user needs and
improving task generalization [72], [73]. Instruction-formatted
instances usually consist of a task description, an optional
input, a corresponding output, and possibly a few examples
as demonstrations. These instances can originate from various
sources, such as traditional NLP task datasets, daily chat data,
and synthetic data. Existing research has reformatted tradi-
tional NLP datasets with natural language task descriptions to
aid LLMs in understanding tasks, proving particularly effective
in enhancing task generalization capabilities [71]. The design
and quality of instruction instances significantly will impact
the model’s performance. Scaling the instructions, for instance,
tends to improve generalization ability up to a certain point,
beyond which additional tasks may not yield further gains [74].
Diversity in task descriptions and the number of instances
per task are also critical, with a smaller number of high-
quality instances often sufficing for significant performance
improvements [71].

2) Alignment tuning: Alignment tuning aims to ensure
LLMs adhere to human values, preventing outputs that could
be harmful, biased, or misleading. This concept emerges from
the realization that while the LLM excels in various NLP
tasks, they may inadvertently generate content that deviates
from ethical norms or human expectations [58]. Collecting
human feedback is central to the alignment-tuning process. In
particular, it involves curating responses from diverse human
labellers to guide the LLM toward generating outputs that
align with the predefined criteria. Approaches to collecting
this feedback include ranking-based methods, where labellers
evaluate the quality of model-generated outputs, and question-
based methods, where labellers provide insights on specific
aspects of the outputs, such as their ethical implications [75].

A prominent technique in alignment tuning is reinforcement
learning from human feedback (RLHF), where the model is
fine-tuned using reinforcement learning algorithms based on
human feedback. This process typically starts with supervised
fine-tuning using human-annotated data, followed by training
a reward model that reflects human preferences, and finally,
fine-tuning the LLM using this reward model. Despite its
effectiveness, RLHF can be computationally intensive and
complex, necessitating alternative approaches for practical
applications [76]. An alternative method for RLHF is direct
optimization through supervised learning, which bypasses the
complexities of reinforcement learning. This method relies on
constructing a high-quality alignment dataset and directly fine-
tuning LLMs to adhere to alignment criteria. Although less
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resource-intensive than RLHF, this approach requires careful
dataset construction and may not capture the full range of
human values and preferences as effectively as RLHF [77].
Additionally, researchers have introduced the direct preference
optimization (DPO) technique [78], which eliminates the need
for a reward model and allows the model to align directly with
preference data. Some advanced LLMs, like Llama 3, utilize
both RLHF with proximal policy optimization (PPO) and
DPO. However, both RLHF and DPO depend on high-quality
human preference data, which is limited and costly to acquire.
To address this challenge, methods such as Constitutional
AI [79] and RL from AI feedback (RLAIF) [80] have been
developed to generate preference data using LLMs, enabling
models to learn from AI feedbacks and facilitating knowledge
transfer between models.

D. LLM Inference and Utilization by Prompting

Prompt engineering is the process in which users design
various inputs for AI models to generate desired outputs.
Compared with fine-tuning, prompting has no requirements
for extra training, producing output instantly based on user
inputs. It indicates a straightforward approach to using LLMs,
and the rapid response and training-free features make it a
promising method for telecom applications. This subsection
will introduce key techniques in prompt engineering, including
ICL, CoT prompting, LLM for complex planning, and self-
refinement with iterative feedback. The comparisons among
different prompt engineering techniques are shown in Fig. 3.

1) In-context learning (ICL): ICL, first introduced with
GPT-3 [58], utilizes formatted natural language prompts and
integrates task descriptions and examples to guide LLMs in
task execution. This approach allows the LLM to recognize
and perform new tasks by leveraging contextual information.
The design of demonstrations is critical for ICL, encompass-
ing the selection, format, and order of examples. The for-
mat of demonstrations involves converting selected examples
into a structured prompt, integrating task-specific information
and possibly incorporating reasoning enhancements like CoT
[74], [82]. The ordering addresses LLM biases, arranging
demonstrations based on similarity to the query or employing
information-theoretic methods to optimize information con-
veyance [83], [84]. ICL’s underlying mechanisms include task
recognition and task learning, and then LLMs can use pre-
trained knowledge and structured prompts to infer and solve
new tasks. Task recognition involves LLMs identifying the
task type from the provided examples, leveraging pre-existing
knowledge from pre-training data [85]. Task learning, on
the other hand, refers to LLMs acquiring new task-solving
strategies through the given demonstrations, a capability that
becomes more pronounced with increasing model size [86].
Recent studies suggest that larger LLMs exhibit an enhanced
ability to surpass prior knowledge and learn from the demon-
strations provided in ICL settings [87].

2) Chain-of-thought (CoT) prompting: CoT prompting
is an advanced strategy to enhance LLM’s performance on
complex reasoning tasks, such as arithmetic, commonsense,

and symbolic reasoning, by incorporating intermediate reason-
ing steps into prompts [82]. Differing from ICL’s input-output
pairing, CoT prompting enriches prompts with sequences of
reasoning steps, guiding LLMs to bridge between questions
and answers more effectively. Initially proposed as an ICL
extension, CoT augments demonstrations from mere input-
output pairs to sequences comprising inputs, intermediate
reasoning steps, and outputs [82]. These steps help LLMs
navigate complex problem-solving more transparently and
logically, though they typically require manual annotation.
However, creative phrasings such as “Let’s think step by step”
can trigger LLMs to generate CoTs autonomously, which
significantly simplifies the CoT implementation.

Despite improvements, CoT prompting faces challenges
such as incorrect reasoning and instability. The enhancement
strategies include better prompt design by utilizing diverse and
complex reasoning paths, advanced generation strategies, and
verification-based methods. These methods address generation
issues by exploring multiple paths or validating reasoning
steps, thus improving result accuracy and stability. Further-
more, extending beyond linear reasoning chains, recent studies
propose tree- and graph-structured reasoning to accommodate
more complex problem-solving processes [88]. In addition,
CoT prompting significantly benefits large-scale LLMs (over
10B parameters) and tasks requiring detailed step-by-step
solutions. However, it may underperform in simpler tasks or
when traditional prompting is already effective [82].

3) Planning for complex task solving: While ICL and
CoT prompting provide a straightforward approach for task
solving, they often fall short in complex scenarios like math-
ematical reasoning and multi-hop question answering [89].
To this end, prompt-based planning has emerged, breaking
down intricate tasks into smaller and manageable sub-tasks and
outlining action sequences for their resolution. The planning
framework for LLMs encompasses three main components:
the task planner, the plan executor, and the environment. The
task planner devises a comprehensive plan to address the target
task, which could be represented as a sequence of actions or an
executable program [90]. This plan is then carried out by the
plan executor, which can range from text-based models to code
interpreters, within an environment that provides feedback on
the execution results [88], [91]. In plan generation, LLMs
can utilize text-based approaches to produce natural language
sequences or code-based methods for generating executable
programs, enhancing the verifiability and precision of the
planned actions [91]. Feedback acquisition follows, where the
LLM evaluates the plan’s efficacy through internal assessments
or external signals, refining the strategy based on outcomes
from different environments [88]. In addition, the refinement
process is crucial for optimizing the plan based on received
feedback, and the corresponding methods include reasoning,
backtracking, memorization, etc [88].

4) Self-refinement with iterative feedback: Considering
that LLMs may not generate correct answers initially, self-
refine has recently emerged to improve their outputs through it-
erative feedback and refinement. Among these studies, Madaan
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Fig. 3. Comparison of various prompt engineering techniques [11], [81]. Different from task-specific examples in ICL demonstrations, CoT prompting
additionally incorporates intermediate reasoning steps in demonstrations. Prompt-based planning breaks down intricate tasks into manageable sub-tasks and
outlines action sequences for their resolution. Self-refine enhances LLM’s outputs through iterative feedback and refinement.

et al. [81] first use an LLM to generate initial outputs, and
then employ the same LLM to provide specific feedback on
these outputs. Note that this feedback is actionable, containing
concrete steps to further improve the initial outputs. With
such specific and actionable feedback, the same LLM can
iteratively refine its outputs until performance converges. Fur-
thermore, Hu et al. [92] propose a self-refined LLM (named
TrafficLLM) specifically designed for communication traffic
prediction, which leverages in-context learning to enhance
predictions through a three-step process: traffic prediction,
feedback generation, and prediction refinement. Following the
comprehensive feedback, refinement demonstration prompts
enable the same LLM to refine its performance on target tasks.

E. Evaluation metrics of LLM

Evaluating the performance of LLMs is a multifaceted
task and receives increasing attention. This subsection focuses
on the evaluation metrics that encompass various dimen-
sions, including accuracy, hallucination, efficiency, and human
alignment etc. Each of these aspects plays a crucial role
in determining the overall applicability of LLMs in real-
world scenarios such as telecom networks. Firstly, accuracy
is paramount in evaluating LLM technologies as it directly
impacts the model’s reliability and trustworthiness. It measures
how well an LLM can understand and process natural language
queries, generate relevant and correct responses, and perform
specific tasks like translation, summarization, or question-
answering. Benchmarks and standardized datasets are often
used to quantitatively evaluate the model’s accuracy.

Secondly, hallucination refers to instances where the LLM
generates incorrect or factual inconsistent information, often
presenting it with a high degree of confidence. This phe-
nomenon can significantly undermine the credibility of LLM-
generated content. Evaluating an LLM’s tendency to halluci-
nate involves analyzing the model’s responses for factual ac-
curacy, consistency, and relevance to the input prompt. Recent
studies show that traditional automatic metrics for summa-
rization such as ROUGE [93] and BERTScore [94] show sub-
optimal performance on factual consistency measurement [95].
Thereafter, some novel metrics have been proposed to detect
hallucination errors, such as AlignScore in [96].

Then, the efficiency of LLMs indicates the computational
resources required for training and inference, as well as the
speed at which these models can generate responses. As the
size of LLM expands, this expansion leads to significant
issues regarding environmental sustainability and the ease of
access to these technologies [97], [98]. Evaluating an LLM’s
efficiency involves a detailed assessment of its performance
relative to the consumed resources. Key metrics for this
assessment include the energy usage during operations, the
time it takes to process information, and the financial burden
associated with acquiring and maintaining the necessary hard-
ware infrastructure. Additionally, it’s important to consider the
efficiency of data usage during training, as optimizing data can
reduce computational requirements [99].

The last metric is human alignment. Manual evaluation
for LLM alignment to human values generally offers a more
holistic and precise assessment compared to automated eval-
uation [100]. This is supported by numerous studies, such
as [101], [102], which incorporate human alignment evaluation
to provide a more in-depth analysis of their methods’ perfor-
mance. Human alignment assesses the degree to which the lan-
guage model’s output aligns with human values, preferences,
and expectations. It also considers the ethical implications of
the generated content, ensuring that the language model pro-
duces text that respects societal norms and user expectations,
promoting a positive interaction with human users.

F. LLM Deployment in Telecom Networks

Practical deployment is the prerequisite for advanced appli-
cations of LLM technologies in telecom networks. In particu-
lar, it indicates how LLMs can be deployed within the current
telecom network architecture, e.g., central cloud, network
edge or even user devices. The LLM has great demands
for computational and storage resources. For instance, GPT-
4 has 1.76 trillion parameters and the model size is 45 GB
[73], posing a heavy burden on network storage capacities.
Fine-tuning an LLM with 7 billion parameters, such as GPT-
4-LLM [109], could take nearly 3 hours on an 8×80GB
A100 machine, which is extremely time-consuming [110]. In
addition, the inference time of LLMs will also contribute to
overall network latency, which is related to hardware support,
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TABLE III
SUMMARY OF LLM DEPLOYMENT STRATEGIES

LLM
deployment
strategies

Main features & Advantages Potential issues & Difficulties

Cloud
deployment

Cloud deployment is the most straightforward method
for LLM deployment. LLMs are usually

computationally demanding, and cloud servers can
provide abundant computational and storage resources

for model training, fine-tuning, and inference.

Cloud deployment indicates higher end-to-end latency for implementing
user requests, since the inquiries have to be first uploaded and then
processed and downloaded. It may prevent the application of some
latency-critical applications such as robot control, vehicle-to-vehicle

communications, unmanned aerial vehicle (UAV) control, etc.

Network edge
deployment

Network edge deployment can be an appealing
approach to shorten the response time and save

backhaul bandwidth to the central cloud. It enables
rapid user request processing at edge servers or

cloud, achieving shorter end-to-end delay than the
central cloud-based approach.

Network edge servers are usually resources-constrained, indicating
limited computational and storage resources for LLM fine-tuning and
inference. Therefore, some techniques may be exploited, e.g., efficient

parameter-efficient fine-tuning [103], split edge learning [104], and
quantized training [105]. In addition, model compression is also a

promising direction for edge LLM deployment.

On-device
deployment

On-device LLM is considered a very promising
direction to deploy LLMs directly at user devices. It

enabled customized LLMs based on specific user
requests. Meanwhile, on-device LLMs have the

lowest service latency by processing tasks locally.
Therefore, it has great potential for implementing

real-time tasks.

Despite the great advantages, on-device LLMs are still in the very early
stages, and the main challenge is to overcome the very limited

computational and storage resources at user devices. Apple has proposed
a technique to store LLM parameters on flash memory [106] and achieve

a 20 times faster inference speed. Qualcomm also announced a new
mobile platform to support popular small-scale LLMs [107]. Therefore,
how to utilize limited computation resources to achieve faster inference

is the key to on-device LLM deployment.

Cache-based
deployment

Cached-based approach is proposed by [16] based on
mobile edge computing architecture. Specifically, the
authors propose to store the full-precision parameters
in the central cloud, quantized parameters in the edge
cloud, and the frozen parameters at the user devices,
enabling more flexible model training and migration.

Such a distributed deployment approach is promising to save the model
store and migration cost. However, compared with on-device deployment,
the cache-based method also requires complicated coordination strategies

for model update and synchronization, e.g., model update and
synchronization frequency and the quantization bit version selection.

Cooperative
deployment

Cooperative deployment is proposed in [108], which
involves the interactions between local small models

and cloud-based large models. In particular, it
assumes that the local model can collect and submit
sensor data selectively to the large model, and the

large model will update the small-scale local models
based on its domain-specific knowledge.

The cooperative deployment is a feasible solution to connect small-scale
local LLMs to large cloud models. However, the local model updating
frequency should also be carefully determined to reduce the burden on
cloud LLMs. In addition, note that the inference is still updated locally,
and therefore the required computational resources are still challenges.
To this end, it may be combined with on-device LLMs to address the

resource issues.

batch size, parallelism, model pruning, etc [111]. Therefore, it
is of great importance to deploy LLMs appropriately to better
serve the telecom network demand. We summarize the existing
deployment schemes in Table III, including cloud, network
edge, on-device, cache-based, and cooperative deployment. We
present the details of each strategy as the following:

1) Cloud deployment: : Considering LLM’s high demand
for computational and storage resources, deploying LLMs in
the central cloud is a straightforward solution, which can
provide substantial computational resources to support the
fine-tuning and inference of LLMs [15]. Shen et al. investigate
LLM-enabled autonomous edge AI [15], in which the network
edge devices can send the user request and datasets feature to
LLMs in the cloud, and then the LLM can send back the
task planning and AI model configuration to network edge
devices through the backhaul. After that, the network edge and
user devices can collaborate to make edge inferences. Cloud
deployment can easily adapt to existing telecom network
architecture, and a few pieces of extra hardware are needed
since the LLM is deployed in the virtual cloud. However,
cloud deployment suffers from long response time and high
bandwidth costs since all data has to be transmitted to the
cloud, and then LLM will process the request and finally

download the LLM’s output [16]. The long response time may
prevent the applications on latency-critical tasks, e.g., vehicle-
to-vehicle networks and unmanned aerial vehicle control. In
addition, the frequent multimodal information exchange, such
as images and videos, between end users and cloud LLM will
lead to extra bandwidth costs.

2) Network edge deployment:: Here network edge refers
to edge cloud or BSs that are closer to users than central cloud.
Network edge deployment can be an appealing approach
to shorten the response time and save bandwidth. However,
compared with the central cloud, network edge devices usually
have limited computational and storage capacities. To this end,
multiple techniques can be exploited. For the storage capacity
challenge, parameter sharing and model compression may be
applied. In particular, LLMs for different downstream tasks
may share the same parameters, which can be exploited to save
the storage capacity. On the other hand, other technologies
may be applied to reduce the computational resources demand
in fine-tuning and inference, including parameter-efficient fine-
tuning [103], split edge learning [104], and quantized training
[105]. With these techniques, deploying LLMs at the network
edge becomes a practical strategy.
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Fig. 4. Illustration of different LLM deployment strategies.

3) On-device deployment:: There are multiple benefits
of deploying LLMs on user-side mobile devices, e.g., fast
responses and local customization based on the user’s specific
requirements. However, such a deployment is also challenging
since LLMs are usually storage- and computation-intensive.
Xu et al. introduced a split learning approach based on col-
laborative end-edge-cloud computing, aiming to deploy LLM
agents at mobile devices and network edge [17]. Specifically,
the authors assume that LLMs with less than 10B parameters
such as LLAMA-7B can operate on mobile devices, providing
real-time inference services. Meanwhile, LLMs with more
than 10B parameters such as GPT-4 are deployed on network
edge servers, using global information and historical memory
to assist the mobile LLM in processing complex tasks. Such
a collaboration enables higher flexibility by exploiting mobile
LLMs. However, the study of on-device LLM is still in a very
early stage, and it requires considerable efforts to prove the
feasibility of such a design [112]. For instance, Apple has pro-
posed a technique to store LLM parameters on flash memory
[106], achieving a 20 times faster inference speed than using
GPU with limited dynamic random-access memory (DRAM)
capacity. Similarly, Qualcomm has recently announced the
Snapdragon 8s Gen 3 mobile platform, which supports popular
small-scale LLM such as Llama 2 and Gemini Nano [107].
These studies may pave the way to effective inference of on-
device LLMs.

4) Cache-based deployment: Lin et al. proposed a cache-
based method in [16], which utilizes the mobile edge com-
puting architecture to store, cache, and migrate models in
edge networks. Specifically, they propose to store the full-
precision parameters in the central cloud, quantized parameters
in the edge cloud, and finally the frozen parameters at the
user devices. Such a separate model caching enables more
flexible model training and migration. For instance, edge
clouds or servers can apply low-precision computation by
using quantized training, improving the edge training speed
with limited computational resources. In addition, storing
the frozen parameters on user devices can save the storage

capacities of the edge cloud, reducing the latency caused by
full model migration. However, the cache-based method may
require complicated coordination strategies for model update
and synchronization, e.g., model update and synchronization
frequency and the quantization bit version selection.

5) Cooperative deployment: Lin et al. proposed a novel
EdgeFM approach in [108]. In particular, the edge devices
will collect the sensor data from the environment, and then
the local model can evaluate the uncertainty features of the
collected data and the real-time network dynamics. After that,
the local EdgeFM model will selectively upload the unseen
data classes to query large models in the cloud, and the
large models can periodically update a customized small-scale
model at the network edge. Therefore, when the network
environment changes, at the early stage, the local model can
frequently query large models in the cloud, and then it can
execute customized small models on edge devices at the late
stage. Such a cooperative deployment can reduce the system
overhead, and enable dynamic customization of local small
models for edge devices. The experiment in [108] shows
3.2x lower end-to-end latency and achieve 34.3% accuracy
improvement than the baseline.

Finally, Fig. 4 illustrates different LLM deployment strate-
gies. Note that LLM’s requirements for storage and compu-
tational resources are the main motivations for developing
various deployment strategies. For instance, the model size
of Llama3-8b is around 5 GB, and therefore it is possible to
be implemented at the network edge or even user devices, i.e.,
Snapdragon 8s Gen 3 mobile platform recently developed by
Qualcomm. Similarly, Gemini Nano is less than 2 GB, and
such a small size allows on-device deployment, e.g., Google
plans to load Gemini Nano to its Pixel 8 smartphones. By
contrast, large-scale LLMs require much more computation
resources. For example, inference with Llama3-70b consumes
at least 140 GB of GPU RAM. Using 2-bit quantization,
the Llama3-70b can be implemented on a 24 GB consumer
GPU, but such a low-precision quantization will significantly
degrade the model accuracy. To this end, hybrid deployment
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methods such as cache-based and cooperative deployment are
proposed. The key objective is to take advantage of large-
scale LLM’s high accuracy, while reducing the dependency on
computational resources. On the other hand, these approaches
may be combined, e.g., deploying small-scale on-device LLMs
and then using larger cloud models to update the local models
periodically. Given these deployment methods, many critical
problems can then be investigated, e.g., service delay eval-
uation and task offloading, which still require more research
efforts. For example, Chen et al. proposed a NETGPT scheme
in [113], involving offload architecture, splitting architecture,
and synergy architecture for cloud-edge collaboration.

G. Analyses of LLM Fundamentals in the Telecom Domain

Previous Sections III-A to III-F have covered the key tech-
niques of LLM fundamentals, ranging from model architecture
and pre-training to evaluation and deployment in telecom
networks. This subsection will analyze how these fundamental
techniques can be applied to the telecom domain.

For telecom applications, pre-training an LLM from scratch
can be time-consuming. It first requires extensive dataset
collection, and the dataset preprocessing has to consider the
format of complicated telecom equations and theories. Mean-
while, it also requires considerable computational resources
to pre-train LLMs, leading to heavy burdens for telecom
networks. By contrast, a more efficient approach is to fine-
tune a general-domain LLM for specific telecom-domain tasks.
Applying LLM technologies to the telecom domain requires an
in-depth understanding of these fine-tuning techniques, such
as instruction and alignment tuning methods. In particular,
instruction tuning involves carefully constructing and selecting
instruction datasets, employing strategic tuning methodolo-
gies, and considering practical implementation aspects. These
strategies will significantly improve the performance, gener-
alization, and user alignment of LLM technologies in the
telecom domain. On the other hand, alignment tuning is a
multifaceted process involving the setting of ethical guidelines,
collection of human feedback, and application of advanced
fine-tuning techniques such as RLHF. However, adapting these
state-of-the-art fine-tuning techniques to telecom environments
is still an open question. The fine-tuning process is usually
task-specific, which requires professional knowledge of vari-
ous telecom domain tasks. Instruction tuning can be a promis-
ing method for building a telecom-LLM by using existing
telecom knowledge, but the dataset collection can be difficult
due to privacy issues.

Prompting techniques are especially useful for solving real-
time telecom tasks with stringent delay requirements, e.g.,
resource allocation and user association. It means that LLMs
can directly learn from the inputs and generate desired outputs
without extra training, avoiding the tedious model training
process in conventional ML algorithms. For instance, ICL
provides a framework for leveraging the LLM in new task do-
mains without explicit retraining, with its effectiveness heavily
influenced by the design and structure of demonstrations.
Meanwhile, CoT prompting has emerged as a potent method

for eliciting deeper reasoning capabilities in LLMs, applicable
to a range of complex reasoning tasks. While still evolving,
this approach opens new avenues for LLM application across
diverse problem domains such as the telecom field. In addition,
prompt-based planning represents a sophisticated approach to
navigating complex tasks, enhancing LLM’s problem-solving
capabilities through structured action sequences, feedback
integration, and continuous plan refinement. Such planning
capabilities are very important for telecom applications since
many telecom tasks involve multi-step thinking with compli-
cated procedures. For instance, the resource allocation may
include multi-layer controllers [4], and optimization problems
can involve several agents and elements [114]. Therefore,
multi-step planning and thinking should be carefully designed
for LLM-enabled telecom applications.

Evaluation metrics are critical to assess the LLM’s perfor-
mance in telecom environments. For instance, efficiency is one
of the most important metrics that should be considered in tele-
com applications since many tasks require rapid or even real-
time responses. Therefore, LLMs with long inference times
may be inappropriate for these mission-critical applications,
e.g., Ultra-Reliable Low Latency Communications (URLLC).
In addition, evaluating the performance of LLMs should also
include their proneness to hallucination and ethical standards,
e.g., LLM may make misleading or even wrong decisions in
network management. As LLM design and models continue
to evolve and integrate more deeply into various aspects of
society, the criteria for their evaluation will likely expand and
become more sophisticated. Ensuring that LLMs are accurate,
reliable, efficient, and ethically responsible is essential for
their sustainable and beneficial integration into human-centric
applications.

Finally, practical deployment is the prerequisite for applying
LLM to telecom networks. Compared with other domains
such as education or healthcare, many telecom tasks have
stringent requirements for delay and reliability, which require
more efficient and reliable model output. Meanwhile, telecom
devices usually have limited computational and storage re-
sources. Therefore, efficient model training, fine-tuning, infer-
ence and storage techniques should be explored [16]. With
previous knowledge and analyses, we will present detailed
LLM-inspired techniques and applications in telecom tasks in
terms of generation, classification, optimization, and prediction
problems in the following sections.

IV. LLM FOR GENERATION PROBLEMS IN WIRELESS
NETWORKS

The outstanding generation capability is one of the most
attractive features of LLMs. This section first introduces the
motivations for applying the LLM technique to telecom-related
generation tasks, and then it presents detailed application
scenarios, including telecom domain knowledge generation,
code generation, and network configuration generation.
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TABLE IV
SUMMARY OF LLM-AIDED GENERATION-RELATED STUDIES IN THE NETWORK FIELD.

Topics Refer-
ences Proposed LLM-aided generation schemes Key findings & Conclusion Telecom application opportunities

Domain
knowledge
generation

[115]

Adapting a BERT-like model to the telecom
domain and testing the model performance by

question answering downstream task in the
target domain.

The proposed technique achieved F1 score of
61.20 and EM score of 36.48 on question
answering in a small-scale telecom question

answering dataset. Techniques such as customizing
LLMs to understand

and apply telecom-specific
language, evaluating their
genuine understanding of

domain knowledge generation
can contribute to more

efficient, reliable, and secure
telecom service applications.

Existing studies have
demonstrated the capability

of LLM techniques to be applied in
telecom, including question
answering, literature review,

generating troubleshooting report.
It shows great promises to build
next generation communication

networks.

[116]

It proposed a multi-stage BERT-based
approach to understand the textual data of

telecom trouble reports, and then generate a
ranked solution list for new troubles based on

previously solved troubleshooting tickets.

1) Presenting more information in the query can
produce a better list of recommended solutions;
2) Creating a small candidate list is the key to

reducing the model latency.

[23]

It combines a BERT-like method with transfer
learning for trouble report retrieval,

leveraging non-task-specific telecom data and
generalizing the model to unseen scenarios.

The experiment includes nearly 18500 trouble
reports, showing that combining pre-trained

telecom-specific language models with fine-tuning
strategies outperforms pure domain adaptation

fine-tuning.

[117]
Question answering test on various LLMs,
e.g., GPT 3.5, GPT 4, and Bard, including
telecom knowledge and product questions.

Bard and GPT4 show promise with respect to
accuracy and could be useful for telecom domain

question and answering. LLM’s summarization
requires reliability tests.

[118]

Integrating domain-specific grammars into
LLMs to guide the generation of structured
language outputs, enhancing performance in

domain-specific tasks.

Demonstrating the efficacy of integrating
domain-specific grammars with LLMs in

enhancing their ability to generate structured
language outputs tailored to specific domains. It

emphasizes the potential of this approach to
significantly improve LLM performance in

domain-specific tasks.

Code
generation

[14]

Using LLMs to generate Verilog code for
wireless communication system development
in FPGA. The experiment was implemented

in the OpenWiFi project.

The LLM is capable of refactoring, reusing, and
validating existing code. With proper design and
prompting, LLMs can generate more complicated
projects with multi-step scheduling. LLM greatly

reduced the coding time of undergraduate and
graduate students by 65.16% and 68.44%,

respectively.

Code is the cornerstone of modern
communication networks, and the LLM

provide promising opportunities to
improve the efficiency and reliability
of codes, and meanwhile greatly save

human effort.
a) The LLM can refactor and

validate existing code.
This is very useful in
telecom filed, since

the network architecture is
constantly evolving and updated;

b) With proper prompting, the LLM
can generate complicated projects

with multi-step scheduling
requirements, which is very

common in telecom filed due to
complicated network elements with

diverse functions.

[119]
It proposed a framework to use LLM to

generate task-specific code for traffic analyses
and network life-cycle management.

Combining the LLM with proper libraries, such
as GPT-4 and NetworkX, can achieve 88% and

78% coding accuracy for traffic analysis and
network lifecycle management tasks, respectively.

[18]
Employing four students to reproduce the

results of existing network studies with the
assistance of LLMs.

The students successfully reproduced networking
systems by prompting engineering ChatGPT.

They also achieve much lower lines of code by
using ChatGPT, e.g., one of them is only 20% of

the open-source existing version.

[120]
Using LLM techniques for automated

program repair of introductory level Python
projects.

The proposed scheme successfully repaired a
larger fraction of programs (86.71%) compared to

the baseline (67.13%), and adding few-shot
examples will raise the ratio to 96.50%.

[121]

Fine-tuning pre-trained LLMs on Verilog
datasets collected from GitHub and Verilog

textbooks and then generating Verilog
projects.

Fine-tuning LLMs over a specific language can
improve the coding correct rate by 26%.

Network
configuration

generation

[122]
It proposed a three-stage LLM-aided

progressive policy generation pipeline for
intent decomposition.

Through evaluating a service chain use case, the
paper found LLMs could generalize to new

intents through few-shot learning and concluded
leveraging LLMs for policy generation is

promising for automatic intent-based application
management.

Telecom network operators
can leverage the LLM for network

configuration generation in
various ways. This includes automatic

network provisioning, optimization
and performance tuning, security

and compliance configuration,
fault diagnosis and troubleshooting,

and network virtualization. The LLM
enables efficient, reliable, and
secure generation of network

configurations, reducing manual
effort and improving network

management in telecom
environments.

[123]

It proposed a multi-stage framework that
utilizes LLMs to automate network

configuration by taking in natural language
requirements and translating them into formal

specification, high-level configurations, and
low-level device configurations.

The results showed that state-of-the-art LLM
technologies like GPT-4 are capable of generating

fully working configurations from natural
language requirements without any fine-tuning.

[124]

It proposed a framework that combines LLMs
with verifiers, using localized feedback from

verifiers to automatically correct errors in
configurations generated by the LLM.

The proposed scheme is able to synthesize
reasonable though imperfect configurations with
significantly reduced human effort, and coupling
LLMs with verifiers providing localized feedback

is necessary for real-world use configurations
despite requiring more testing.
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A. Motivations of Using LLM-based Generation for Telecom

This subsection will introduce the key motivations of us-
ing LLM-enabled generation for telecom applications. Firstly,
LLM can make telecom knowledge more accessible. LLMs
have been pre-trained on many real-world datasets and
equipped with considerable knowledge from various fields.
Therefore, question-answering has become the most well-
known application of LLMs. With domain-specific datasets
from websites and textbooks, the LLM can extract professional
knowledge from existing publications and then generate appro-
priate answers based on users’ requests. For instance, Maatouk
et al. build a telecom knowledge dataset in [125], including
25,000 pages from research publications, overview, and stan-
dards specifications. With proper training and fine-tuning, such
a dataset can greatly contribute to a Telecom-GPT, providing a
systematic overview of hundreds of publications and standards.
With reasoning and comprehension capabilities, professional
telecom knowledge will become much more accessible to all
researchers and even benefit the whole society.

Meanwhile, LLM’s generation capabilities can also auto-
mate many tasks that are usually time-consuming. For in-
stance, developing new standard specifications usually requires
considerable writing, discussions, and reviews. By contrast,
given enough historical reports and proper prompts, the LLM
can produce a draft standard instantly, and then the experts
can review it accordingly. Moreover, the experts’ comments
can be fed directly to LLMs, and then the LLM can produce
a new version efficiently, significantly saving human efforts on
writing and revising paper works. Similarly, LLM technologies
have been used to generate code in many existing studies,
which is one of the most time-consuming tasks of modern
industry [18], [120]. LLMs can refactor and improve existing
codes, contributing to developing telecom projects.

In addition, LLMs can easily learn from the provided
existing examples, which is known as ICL. This capability is
particularly useful in generation tasks, and LLMs can quickly
generalize the given examples to related unseen scenarios.
Meanwhile, if the initial generated output can not satisfy the
requirements, users can also send the feedback directly to the
LLM input, and then the LLM agent will revise the generation
accordingly. This user-friendly generation approach will lower
the difficulty of applying LLM techniques to generation tasks
in telecom, which usually requires considerable professional
knowledge and experience.

Given the above motivations and advantages, it is crucial to
exploit LLM’s generation capabilities and apply them to tele-
com networks. Table IV summarized LLM-aided generation-
related studies and telecom application opportunities. In the
following, we will introduce domain knowledge generation,
code generation, and network configuration generation.

B. Domain Knowledge Generation

Generating domain-specific knowledge is an important ap-
plication of LLM technologies in telecom. In particular,
it refers to creating comprehensive summaries, overviews,
and interpretations of telecom standards, technologies, and

research findings. By leveraging vast datasets of technical
documents, research papers, and standards specifications, LLM
agents can produce detailed explanations and summaries that
are tailored to the user’s level of expertise and interest. This
not only democratizes access to telecom knowledge but also
serves as a bridge to fill the gap between experts and non-
expert users in the telecom field.

1) Understanding telecom domain knowledge: Telecom
is a broad field, and there are various domains of knowledge
such as signal transmissions, network architectures, communi-
cation protocols, and industry standards. For instance, signal
transmission is fundamental telecom knowledge, involving the
differences between amplitude, frequency, and phase modula-
tion, as well as the distinctions between digital and analog
signals. Meanwhile, communication protocols refer to sets
of rules that ensure standardized data transmission, allow-
ing for interoperability among diverse systems. Knowledge
of these protocols is fundamental for the development and
maintenance of robust communication networks. Additionally,
telecom standards are equally important. Standards such as
3G, 4G, and the emerging 5G for mobile communications, as
well as IEEE 802.11 for Wi-Fi, play a critical role in global
telecom networks [126]. They facilitate the seamless operation
of devices and services across different networks.

A thorough understanding of the above telecom knowledge
is not only vital for the development of new technologies
and services, but also for ensuring that systems are inter-
operable and secure. The depth of understanding in telecom
knowledge directly impacts the ability to innovate, secure, and
solve problems within the telecom field. The integration of
LLMs, trained with domain-specific datasets, offers promising
avenues for automating knowledge generation and facilitating
access to complex telecom content, thus bridging the gap
between experts and general users.

2) Training LLMs with telecom-specific data: Training
LLMs with telecom-specific data involves curating and pre-
processing vast amounts of domain-specific information to
fine-tune the models, aiming to generate accurate and relevant
content within the telecom field. This process is crucial as
it tailors the LLM’s capabilities to understand and generate
content that aligns with specific telecom requirements. It can
be summarized by following steps:

• The first step in training the LLM with telecom-specific
data is the collection of datasets. These datasets may
include technical documents, research papers, standards
specifications, and other forms of professional literature
prevalent in the telecom sector. For example, Holm et
al. [115] created a small-scale TeleQuAD to train the
question-answering capabilities of the build Bert-based
model. Similarly, 185,000 trouble reports [23] are in-
cluded to train a Bert-like model to generate automated
troubleshooting tickets. However, these datasets are usu-
ally inaccessible to the public. By contrast, Maatouk et
al. [125] introduced a large dataset of telecom knowledge
to provide systematic overviews and detailed explanations
of standards and research findings.
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Fig. 5. Using language models for automated troubleshooting in telecom fields [23].

• Following dataset collection, the preprocessing stage
involves cleaning and organizing the data to make it
suitable for training. This step may include removing
irrelevant information, correcting errors, and converting
the data into a format that is compatible with the ML
model. The study [127] shows that preprocessing large-
scale datasets for LLM training can improve the model’s
learning efficiency and output quality.

• Finally, it is worth noting that there are two main ap-
proaches to train LLMs, which are training the model
from scratch or fine-tuning a general-domain LLM. In
particular, training the model from scratch may produce
better performance since the model can specialize in
telecom language, but it is also time-consuming. On the
other hand, the fine-tuning process adapts the pre-trained
LLM to the telecom domain. This step involves training
the model on the collected telecom-specific dataset, al-
lowing it to adjust its parameters to better understand
and generate telecom content. Fine-tuning enables the
model to grasp the unique terminologies, concepts, and
contexts of the telecom field, significantly enhancing its
generation capabilities. Although fine-tuning a pre-trained
LLM is much more efficient than training from scratch,
the experiment in [115] proves that training the model
on telecom-domain text from scratch can achieve better
performance than fine-tuning a general-domain model.

The integration of telecom-specific data into LLM training
is not just about enhancing the model’s knowledge base; it’s
about equipping the LLM with the ability to understand the
nuances and complexities of the telecom field. This tailored
training approach ensures that the LLM can generate content
that is not only informative but also practical and applicable
to real-world telecom challenges.

3) Using LLM to telecom knowledge-related genera-
tion tasks: After proper training or fine-tuning, using LLMs
to generate telecom domain knowledge is a transformative
approach that leverages the model’s ability to process and
synthesize vast amounts of information into coherent, accessi-
ble content tailored to the needs of various stakeholders in
the telecom field. This capability extends from generating
summaries of complex technical documents to answering
specific queries with detailed explanations, thereby facilitating
a deeper understanding of telecom technologies, standards,
and practices. In the following, we present some existing
applications of telecom knowledge-related generation tasks.

Telecom-domain question answering: Question answer-
ing is one of the most well-known applications of LLM tech-
nologies. Using LLMs to answer domain-specific questions
is grounded in the model’s ability to interpret and articulate
complex information in a manner that is both comprehensive
and understandable. For example, Soman et al. evaluated
the capabilities and limitations of existing pre-trained general
domain LLMs in [117], including GPT-3.5, GPT-4, Bard, and
LLaMA. For instance, one telecom-domain question is ”What
are the different 5G spectrum layers?” GPT-4 identifies the
bands as below 1 GHz, 1-6 GHz and above 6 GHz, while
LLaMA identifies the frequency bands as below 600 MHz, 600
MHz-24 GHz and above 24 GHz. These differences could be
caused by different data sources of GPT-4 and LLaMA in the
pre-training period. However, this could easily confuse or even
mislead users without professional knowledge, which shows
the importance of training a telecom-domain LLM specifically.
Holm et al. [115] further investigate how various training
methods can affect the model performance, e.g., pre-training
a model using telecom knowledge from scratch or fine-tuning
an existing general-domain model. In summary, LLM-enabled
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question answering democratizes access to advanced telecom
knowledge, making it accessible to a broader audience, in-
cluding researchers, practitioners, and the general public. In
addition, LLM agents can also tailor the generated content
based on the user’s level of expertise and specific interests.
There is an increasing number of commercial LLM products
for generative question answering over business documents,
e.g., nexocode and Caryon. By leveraging the comprehensive
understanding and generation capabilities of LLM technolo-
gies, the telecom industry can enhance the accessibility of
complex information, support educational endeavours, and
streamline development processes.

Generating troubleshooting solutions for telecom trou-
ble reports: Telecom networks are complicated large-scale
systems, and it is critical to identify, analyze and then resolve
both software and hardware faults, which are known as trouble
reports. The authors in [116] and [23] investigated using lan-
guage models to understand previous trouble reports and then
generate recommended solutions. Grimalt applied a BERT-
based model to generate and rank multiple possible solutions
for a given system fault in [116], which archives a nearly 55%
correct rate. Then, Bosch [23] improved the model in [116]
by including transfer learning and non-task-specific telecom
data to improve the generalization capabilities on handling
unseen trouble reports. Fig.5 summarizes the proposed scheme
in [116] and [23]. One can observe that the analysis and
correction phases can be time- and effort-consuming, which
usually requires professional knowledge of telecom networks
and devices. To this end, a language model-enabled method
is proposed. It considers trouble report observation, headings,
and fault areas as input and generates the top-K possible
solutions. Then, the generated candidate solutions are sent
back for verification. In particular, the fine-tuning process of
the language model consists of three main steps, including
the telecom language dataset, MS MARCO document rank-
ing dataset [128], and trouble report dataset. Here, the MS
MARCO dataset is included to train question-answering and
ranking models, in which a large number of question-answer
pairs are collected from search engines [128]. Fig.5 proves that
using language models to generate solutions for automated
troubleshooting can significantly improve overall efficiency,
enabling faster response and repair for telecom.

Finally, it is worth noting that these models may generate
misleading or even wrong solutions, which can be caused by
different data sources, training strategies, and so on [117]. For
instance, the best correct rate in [23] is around 60%, and there-
fore, verification is crucial before real-world implementation.

C. Code Generation

Efficient and reliable code is of paramount importance
to intelligent communication networks. Recent studies have
demonstrated the strong coding capability of LLMs, including
commonly-used languages (e.g., Python [120], [129]) and
hardware description languages (e.g., Verilog [14], [121]).
For instance, Zhang et al. [120] apply the LLM to build
an automatic program repair system for introductory Python

programming assignments, and the experiment on 286 real stu-
dent programs achieves a repair rate of 86.71%. For hardware
description languages like Verilog for FPGA development,
Du et al. [14] show that LLM can reduce nearly 50% of
the coding time for undergraduate and postgraduate students
and improve the quality by 44.22% for undergraduates and
28.38% for postgraduates. Existing studies [14], [120], [121],
[129] have shown that LLM can refactor and improve existing
codes. In addition, well-crafted prompts and designs can
tackle complex, multi-step coding challenges encompassing
multiple sub-tasks. Given these potentials, introducing LLM-
aided coding into telecom can greatly save human effort
in coding, validating, and debugging while providing more
efficient and reliable codes for telecom network scheduling
and management projects.

1) LLM for code refactoring: Code refactoring is a com-
mon task that is frequently involved when developing wireless
communication systems. Code refactoring aims to improve the
readability, efficiency, and reliability of existing code [130].
For instance, good readabilities can lower the difficulty of
long-term maintenance and reuse of existing code modules.
Readability is also a critical requirement for wireless networks
since the network architectures and protocols are constantly
evolving and updated, e.g., from WiFi 6 to 6E and WiFi 7, and
from RAN to cloud RAN and Open RAN. However, real-world
projects usually include multiple contributors with different
coding styles and mixed qualities. Such an issue could be
very common in telecom, which are considered as complicated
large-scale systems that include multiple modules with diverse
functions. Therefore, improving code readability, efficiency,
and reliability becomes more important for the telecom field.

Fig. 6 shows an example from [14], which applies ChatGPT
to revise the original code of an open-source FPGA-based
project OpenWiFi [131]. The pink fonts indicate the changes
made by ChatGPT. In particular, ChatGPT suggests using
meaningful names for modules and variables, e.g., replacing
the name “DelayT” with “DelayBuffer”. Meanwhile, four
comments are added to improve the readability of the input and
output. The input and output data type specification “wire” is
added from line 2 to line 5, providing more explicit definitions
and higher reliability. ChatGPT also recommends adding the
negative edge of active-low reset signals in the “always” block
in line 9 of the revised code. Du et al. [14] explained that such
an asynchronous reset is more reliable and the system can
make instant responses when detecting errors, without waiting
for the rising edge of the clock signal.

In addition, code validation is also an important task for
telecom project development. Du et al. [14] utilized ChatGPT
to generate an error-free testbench for effective OpenWiFi
project validation. However, the fine-tuning process is not
investigated, which can be a prerequisite for effectively gen-
erating hardware description languages. Different from the
aforementioned studies, Thakur et al. [121] fine-tuned a pre-
trained LLM on Verilog datasets collected from GitHub and
textbooks, demonstrating that fine-tuned LLMs can improve
the coding correct rate by 26% on a specific language.
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Fig. 6. Using ChatGPT to improve the code quality of OpenWiFi project [14] (The pink fonts show the main changes).

2) LLM-aided code generation with multi-step schedul-
ing: Previous sections have shown that LLM can be used
for fundamental coding tasks. However, real-world telecom
project development is usually much more complicated by
including multi-step scheduling and several sub-tasks. Xiang
et al. applied LLM to regenerate the code of existing studies in
[18], and the authors suggested that ChatGPT does not respond
well to monolithic prompts like ”implement this technique
in the following steps”. Instead, a more practical method
is to send a detailed modular prompt each time. Such a
step-by-step approach is also investigated in [119] and [14].
Specifically, Mani et al. [119] applied LLMs to network graph
manipulation, and the prompt design is decoupled into the
application prompt and code generation prompt. Specifically,
the application prompt can provide task-specific prompts based
on templates and user queries, and then the code generation
prompt can use plugins and libraries to instruct LLMs. The
experiment shows that combining the LLM with proper li-
braries, such as GPT-4 and NetworkX, can achieve 88% and
78% coding accuracy for traffic analysis and network lifecycle
management tasks, respectively. Du et al. investigated a more
complicated coding task in [14] by using Verilog to build
a Fast Fourier Transform (FFT) module. A failure is first
observed by using the following prompt:

A failed prompt in [14] to generate FFT module.

Help me write an FFT module for my FPGA
system in Verilog language. Here are details of
my specifications: ...
I also provide you with the instantiation template:
...

The generated code failed because: a) FFT computation is a

complicated task with several sequential or parallel subtasks;
b) The LLM lacks the capabilities of multi-step scheduling.
To this end, the authors decouple the problem into four steps:

• Step 1: Asking ChatGPT to generate two simple IP cores
that are frequently used in the following FFT design:

I am working on an FPGA project in Verilog.
Please write two IP cores for me. The first IP
core is for butterfly computation for FFT. Here is
its template:....
The second IP core is for complex multiplication
in FFT. I will use it to multiply the output of
a butterfly computation with the twiddle factor
provided... Here is a template of the IP core...

• Step 2: Showing ChatGPT a simple 2-point FFT example
with templates and suggestions and then asking ChatGPT
to produce a 4-point FFT IP core:

”I am writing a four-point DIF-FFT on FPGA.
You can use the following IP cores to build the
target four-point FT IP core. Here is the template
of butterfly computation IP Core...”
”And here is the template of the two-point FFT
IP Core..”
”Further, I also have some suggestions for you...”

• Step 3: Asking ChatGPT to develop an eight-point FFT
module based on the generated 4-point FFT in Step 3:

17



”I am writing an eight-point DIF-FFT on FPGA.
Apart from IP cores Given in Question One,...,
you can also use the fft 4 point IP core generated
in Answer one. You need to look back to Question-
1 and Answer-1 for detailed input/output informa-
tion on the four IP cores. Once again, I want to
emphasize that:...”

• Step 4: Finally, asking ChatGPT to generate a 16-point
FFT using the 8-point FFT that has been generated in
Step 3. This step is repeated in [14] by asking for a 2N -
point FFT module based on previously generated N -point
FFT modules.

Steps 1-4 is an obvious step-by-step CoT approach. Instead
of asking for an 8-point FFT module directly, it starts from
two simple IP cores and then provides examples of 2-point
FFT modules with detailed suggestions. This is a very useful
technique for LLM-aided project design in telecom networks,
decoupling the objective into several steps with detailed ex-
amples and suggestions.

Finally, we summarize some key lessons from existing
studies on the use of LLM for code generation. Firstly, step-
by-step prompt design is an important lesson that has been
demonstrated in several existing studies [14], [18], [119].
Decoupling the complicated multi-step scheduling problem
into several stages will lower the difficulty for LLM’s under-
standing. For instance, in 5G cloud RAN simulation, we can
divide the network into cloud, edge, and users, and then use
LLM to generate the code for each part sequentially. Secondly,
examples and pseudo-code are important for code generation.
The LLM has excellent ICL capabilities, quickly learning
from examples and generalizing to other scenarios. Xiang
et al. [18] also reveal that implementation with pseudocode
first can produce stabilized data types and structures, avoiding
other changes when implementing the following components.
There have been many codes for the telecom field in GitHub
and textbooks, taking advantage of these existing examples
is crucial to use LLM techniques. Then, a significant amount
of human effort can be saved in code generation by using
LLMs for debugging and testing. Xiang et al. [18] also
shows that most errors can be solved by sending the error
message to the LLM. Many of these errors are related to data
types, which can be avoided by specifying key variables’ data
types. This lesson is also proved in [14], in which the LLM
specified the data types of inputs and outputs to improve the
reliability of existing code. Finally, LLM-aided coding can
lower the requirement for professional knowledge [14], [18].
In particular, Du et al. [14] show that both undergraduate and
graduate students can benefit from the assistance of LLMs,
achieving comparable coding qualities. Xiang et al. [18] prove
that undergraduate students can reproduce the results of some
existing network studies by using the LLM.

D. Network Configuration Generation

Network administrators orchestrate the flow of informa-
tion within a network. They can guide data from source
to destination by configuring a complex set of parameters
for network elements. These configurations impact a wide
range of devices and services, such as switches, routers,
servers, and network interfaces. To ensure a reliable data
stream, these settings require precise calibration across all
network functionalities. Over the past ten years, both academic
institutions and the commercial sector have embraced the
concept of Software-Defined Networking (SDN) [132] as a
means to streamline network management, marking a shift
away from the older, more rigid networking models. SDN
offers numerous advantages; nonetheless, adjusting network
settings remains a task that often requires manual input. Such
manual adjustments can be expensive, as they demand the
skills of specialized developers familiar with various network
protocols, and meanwhile such manual configurations are also
intricate and prone to errors. Numerous initiatives have been
launched with the aim of streamlining the translation of over-
arching network guidelines into individual settings for each
network component. Such efforts focus on reducing human
errors by creating verifiable and reliable configuration outputs
through rigorous checks [133], [134]. Nonetheless, setting up
network configurations is still considered as a labour-intensive,
intricate, and costly endeavour for network operators.

Recent advancements have demonstrated that the LLM
possesses the ability to generate cohesive and contextually rel-
evant content. They can answer questions and sustain in-depth
conversations with users. Applications like GitHub Copilot
and Amazon CodeWhisperer exemplify these advancements,
assisting with a variety of programming-related tasks. These
developments inspire confidence that the LLM can also be
utilized to generate network configurations [24], [122].

One notable development of LLM-aided network configu-
ration is CloudEval-YAML [24], a benchmark that provides
a realistic and scalable assessment framework specifically
for YAML configurations in cloud-native applications. This
benchmark utilizes a hand-crafted dataset and an efficient
evaluation platform to thoroughly examine the performance
of LLMs within this context. Dzeparoska et al. [122] have
introduced a pioneering method that employs the few-shot
learning capabilities of the LLM to automate the translation of
high-level user intents into executable policies. This approach
facilitates dynamic, automated management of applications
without the necessity for predefined procedural steps. In a
related vein, Wang et al. [123] have developed NETBUDDY,
a multi-stage pipeline that leverages LLMs to translate high-
level network policies specified in natural language into low-
level device configurations. NETBUDDY first uses an LLM
to convert the input into a formal specification, such as a data
structure to express reachability. It then generates forwarding
information and configuration scripts from the formal specifi-
cation. Finally, NETBUDDY interacts with an LLM multiple
times to sequentially provide topology, addressing details and
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Fig. 7. Frameworks for LLM-based network configuration generation.

prototype programs to automatically generate vendor-agnostic
configurations for the switches and routers. The evaluation of
the network emulator demonstrates NETBUDDY’s ability to
enforce path policies and dynamically modify existing deploy-
ments. In addition, Mondal et al. [124] presented Verified
Prompt Programming (VPP) to improve GPT-4’s ability to
synthesize router configurations. VPP combines GPT-4 with
verifiers like Batfish [135], which check configurations for
syntax errors and semantic differences. Experiments showed
that VPP presented 10× leverage performance for translating a
Cisco configuration to Juniper format by identifying and fixing
syntax errors, structural mismatches, attribute differences, and
policy behaviours through 20 automated prompts. Implement-
ing no-transit policies across 6 routers achieved 6× leverage
performance with 12 automated prompts guiding GPT-4 to
resolve syntax, topology, and semantic policy errors.

Fig. 7 summarizes three frameworks for LLM-based net-
work configuration generation. In particular, the first frame-
work employs a simplistic design, directly utilizing LLM
to generate network configurations from natural language.
However, the generated configurations may be inaccurate and
require human inspection and improvement. In the second
framework [123], a hierarchical design is employed, where
multiple LLMs collaborate to generate low-level network
configurations step-by-step, aiming to enhance the final output.
The verification scheme is crucial to evaluate the quality
of the produced configuration, which may be placed in the
second design as in [124] and [123] to check the syntax,
compilability, and correctness of the generated output. The
third framework [124] is an automated design, incorporating
an automatic verifier once the configuration is generated. This
verifier validates the configuration and allows the LLM to
automatically refine the output. While human inspection is
still necessary, this approach significantly reduces the extent
of manual intervention required. It is worth noting that these
frameworks are not mutually exclusive and can be combined.
For instance, in the hierarchical design, an automatic verifier
can be added after each LLM iteration.

These existing studies have demonstrated the potential of
using the LLM to configure networks automatically, which
can be very useful in configuring telecom network settings.
The LLM offers promising opportunities for the automation of
tedious tasks, reduction of human error and cost, and rapid pro-
totyping and deployment of network infrastructure. However,
telecom networks are complex systems with numerous inter-
dependent components, and there are still many challenges to
applying LLM technologies to telecom network configuration,
e.g., contextual understanding, error handling and verification,
security concerns, and interoperability between vendors and
devices. For example, networks often comprise devices from
various vendors, each with its own configuration language
and parameters. The LLM must be capable of understanding
and generating configurations that are compatible across these
diverse environments. In addition, network configurations must
adhere to security best practices. The LLM must be equipped
to understand and apply these practices consistently to avoid
creating security vulnerabilities.

E. Discussions and Analyses
LLM techniques have promising generation capabilities for

telecom applications, and Sections IV-B to IV-D have intro-
duced various scenarios for generating telecom knowledge,
troubleshooting reports, code, and network configuration. Ta-
ble V summarized the main features, input and fine-tuning
requirements, advantages, and telecom applications. In the
following, we summarize the key findings and analyses.

Firstly, multi-step planning capabilities are crucial for
telecom-related generation tasks. Telecom networks are large-
scale complicated systems, and many tasks require dedicated
planning and scheduling. For example, the study in [14]
demonstrated that using a one-step prompt to generate a
complicated 64-point FFT module is impractical, while step-
by-step planning can achieve a satisfactory result. Similarly,
step-by-step reasoning and planning are also useful to repro-
duce the results of existing publications for code generation
problems [18]. Therefore, multi-step planning, i.e., step-by-
step prompt design, is critical to obtain the desired output.
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TABLE V
SUMMARY OF LLM-BASED GENERATION FOR TELECOM.

LLM-based
generation

applications

Specific
scenarios

Main features
Prompt and fine-tunning

requirement
Advantages compared with

conventional approaches
Applications for telecom fileds

Domain
knowledge
generation

Telecom-
domain
question

answering

Question answering is the
most well-known application

of LLMs. It represents a
significant step forward in the
ongoing effort to bridge the

knowledge gap in telecom and
empower individuals and

organizations within the field,
including telecom question

answering, literature summary
and review, etc.

General domain LLMs can
also answer

telecom-related questions,
but fine-tuning a

telecom-specific LLM can
provide more reliable and
professional answers. CoT
prompting may improve

the answer quality.

The use of LLM techniques
signifies a shift towards more

efficient and accessible
knowledge dissemination
methods than any existing
textbooks, websites, and

tutorials for their
comprehension and reasoning

capabilities.

1) Building a telecom-domain
LLM is a promising direction
to make telecom-knowledge

more accessible for both
professional researchers and

the public.
2) Automated troubleshooting

is another promising
application to automate the

problem-solving process
in telecom fields.

3) The LLM also have the
potential of generating

other language-related tasks,
e.g., specifications

and protocols.

Generating
solutions based

on trouble
reports

Using language models to
generate troubleshooting

solutions automatically. It
considers trouble observations
and fault information as input,

and produces recommended
solutions.

The language model must
be fine-tuned on

telecom-domain language
and trouble reports
datasets. An extra
document ranking

fine-tuning is required to
realize recommendation

functions.

Automated troubleshooting is
a very promising technique to
greatly save human time and
effort, since the conventional

approach relies on expert
knowledge and trial-and-error

tests.

Code
generation

Code
refactoring

Using the LLM for
fundamental code refactoring

and design validations,
improving the code quality

automatically without human
intervention.

The prompt input is easier
since no multi-step

scheduling is involved.
Fine-tuning the LLM

based on existing codes
can improve the quality of

the generated code.

1) Improving the readability,
efficiency, and reliability

of the project.
2) Considerably saving human
effort on coding, debugging,

and testing the project.
3) Lowering the requirement
for professional knowledge
when developing a system.

Coding is one of the most
time-consuming part in

wireless system development.
Incorporating LLM-aided

coding can greatly save human
effort and improve the code

quality. However, datasets may
be required for fine-tuning,

which can be collected from
GitHub or wireless textbooks.

Coding tasks
with multi-step

scheduling

The LLM can also be used to
generate complicated projects

with multi-step scheduling and
sub-tasks.

The input prompts have to
be carefully designed in a

CoT approach with
appropriate examples and

templates.

Network
configuration

generation

Automatic
network

configuration
generation by
using LLMs.

Using the LLM to generate
network configurations

automatically, and then verify
by LLMs or humans.

The prompt must be
carefully designed due to
the complexity of network

configurations, e.g.,
dividing the prompts into
the task-specific part and

code generation part.

The LLM enables efficient
generation of network

configurations, reducing
manual effort and cost in the

telecom industry.

Applications include
automatic network

provisioning, performance
tuning, security and

compliance configuration, etc.

For instance, the prompt design [119] is decoupled into the
application prompt and code generation prompt, in which
the application prompt focuses on task-specific requirements,
and the code generation prompt uses plugins and libraries to
instruct LLMs.

Meanwhile, LLM-enabled generation can significantly save
humane efforts. Existing studies have shown that LLM has ex-
cellent capabilities for code refactoring and validation, which
are usually solved manually with considerable human effort.
Applying such a technique to the telecom field will signifi-
cantly save human labour on projecting coding, validating, and
debugging. For instance, Zhang et al. [120] introduce that the
LLM can successfully repair 86.71% programs for introduc-
tory level Python projects, and adding few-shot examples will
raise the ratio to 96.50%. In addition, LLMs can also abstract
fundamental knowledge in the network field from textbooks,
journals, and specification standards, which avoids the time-
consuming literature review process.

LLMs have been trained on many real-world datasets from
web pages like Wikipedia, and they can be further fine-tuned

on domain-specific datasets, e.g., telecom [125] and cyberse-
curity [136]. Despite the satisfactory performance, there is no
guarantee for the correctness of the generated output. Such
risks are avoided when the generated code or network config-
uration can be verified by pre-designed test cases. However,
when using the LLM to summarize or extract knowledge
from existing literature, the quality of generated knowledge
is hard to validate. For example, LLMs may produce wrong
numbers or units, and these mistakes can easily mislead
users without professional knowledge. To this end, efficient
validation schemes are crucial to evaluate the performance
of generated solutions, especially for coding and network
configuration problems. Human verification is a simplistic and
straightforward approach, but it requires considerable human
labour and can be inefficient. Therefore, automatic validation
is the key to improve the overall efficiency of the whole
pipeline, e.g., sending the code implementation error message
to a LLM for automatic debugging [18], and using LLMs to
validate the network configuration files.
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V. LLM-ENABLED CLASSIFICATION PROBLEMS

Classification problems are extensively studied within tele-
com networks. Accurate and robust classification is crucial
for improving network service quality and performance. This
section will introduce the motivations and capabilities of LLM
technologies in addressing a range of classification problems,
including attack classification and detection, text classification,
image classification, and encrypted traffic classification.

A. Motivations and Classification Capabilities of LLMs

Conventional classification techniques heavily rely on sta-
tistical methods. However, with the recent advancements in
telecom networks, there has been a surge in multi-modal and
heterogeneous network data, e.g., numerical traffic data, tex-
tual security logs, and environmental images, which presents
significant challenges for traditional classification techniques,
indicating a need for more advanced and adaptable approaches.
Recently, LLM techniques have shown their capability to
effectively process multi-modal and heterogeneous data across
both natural language and computer vision fields. These ca-
pabilities position them as a promising research direction for
addressing classification problems within telecom networks.

Firstly, LLM technologies can contribute to telecom se-
curity by automated security language understanding and
classification. Inspired by numerous advancements in NLP,
LLM excels at explaining textual contents and transforming
them into informative representations, such as GPT [149] and
BERT [53]. With their strong capabilities, LLMs have recently
shown exceptional superiority in attack detection, aiming to
enhance the security of telecom networks [139]. Through fine-
tuning pre-trained models or developing LLMs from scratch,
LLMs retain the functional capabilities in general English
while gaining a thorough understanding of the specialized
security language, allowing LLMs to effectively identify and
respond to security threats in telecom networks.

Secondly, LLM techniques have inherent advantages in
text-related classification tasks, which are very useful for
text processing and classification in the telecom field, e.g.,
customer textual feedback, telecom standard specifications,
technique reports and publications. For example, enhancing
the quality-of-experience (QoE) of telecom services hinges
on a comprehensive understanding of customer feedback,
which may include various real-world topics, ranging from
signal strength to sending messages and calls [150]. Given
the superiority across various text-related tasks, LLMs have
strong capabilities to classify customer comments and extract
useful feedback, allowing telecom operators to enhance service
quality by properly understanding user satisfaction levels.

In addition, LLMs can extract visual features from the
dynamic and complex telecom environment. The integration of
computer vision and image processing into the telecom field,
such as equipping BSs with cameras to pinpoint user locations,
can boost network efficiency in the dynamically changing
wireless environment. Although primarily focusing on pro-
cessing and understanding textual information, some LLMs

also have remarkable image processing capabilities in vision-
related tasks [151], including image-to-text generation [152]
and object detection [153], etc. Consequently, this integration
enables the LLM to analyze both visual and network data,
which can effectively bridge the gap between textual and vi-
sual data analysis, leading to a more comprehensive approach
for network management.

Finally, LLM’s zero-shot classification capabilities have
been demonstrated in multiple existing studies, such as text
and image classification tasks [26], [144]. In particular, it
means that the LLM can be used to classify and detect
objects by using the real-world knowledge learned in the pre-
training phase, and no extra training is required for target tasks.
Such zero-shot classification capabilities can be appealing for
telecom networks since many telecom classification tasks need
rapid responses, e.g., network attack detection [139], image
processing and classification [25]. With the above potential and
motivations, in the following, we will introduce LLM-enabled
attack classification and detection, text classification, image
classification, and encrypted traffic classification problems.

B. LLM for Telecom Security and Attack Detection

The numerous advancements in telecom have led to more
complex and interconnected infrastructures with a wide range
of technologies, protocols, and services, which can pose
significant challenges in controlling and monitoring telecom
security. The growing threats and incidences of hostile attacks
have exposed severe vulnerabilities in telecom. For instance,
Denial of Service (DoS) can decrease network availability
by overwhelming systems, and Man-in-the-Middle (MITM)
attacks can violate network integrity by secretly modifying
communications between two parties. This underscores the
requirement for robust attack detection mechanisms to monitor
the network system against malicious activities. However, with
the evolution of current telecom networks, a surge of multi-
modal network data can be captured, including numerical
measurements such as traffic loads and CSI, and descriptive
textual contents with device logs and network configurations.
The data contains a substantial amount of redundant and
correlated information, potentially obscuring critical patterns
in attack detection, which poses significant challenges to
achieving accurate attack detection.

Recently, NLP has achieved numerous successes in captur-
ing informative features from multi-modal and heterogeneous
data across various application scenarios, including sentiment
analysis, speech recognition, and machine translation, among
others. Specifically, LLM techniques have emerged as a
promising direction across various NLP applications, which
are beneficial to explaining textual inputs and transforming
them into quantitative representations. The common method
to apply LLMs across various domains involves employing
general-domain models as baselines, followed by fine-tuning
them for specific domain tasks. To enhance the security of
telecom networks through LLM techniques, it is important
to note that the security language, such as ransomware, API,
OAuth, and keylogger, significantly differs in structure and
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TABLE VI
SUMMARY OF LLM-AIDED CLASSIFICATION-RELATED STUDIES AND TELECOM APPLICATIONS.

Topics Refer-
ences

Proposed LLM-aided generation
schemes Key findings & Conclusions Telecom application opportunities

Security
related

classification

[136]

Building a specialized cybersecurity
language model (named SecureBERT)
through fine-tuning RoBERTa [54] on

a cybersecurity corpus.

SecureBERT excels at understanding text
within a cybersecurity context, which enables

a strong generalization capability across
various telecom security tasks.

By fine-tuning pre-trained general
LLM models [136]–[138] or

building security-specific
models from scratch [139], [140], LLM

models exhibit the advantage in
understanding security context,

enabling the application
of LLM techniques across a

range of telecom security tasks.
Existing studies show that

LLM-based method can outperform
existing ML and DL models in

terms of classification and
detection accuracy. LLM techniques
can also provide incident recovery

suggestions. However,
it is essential to initially create relevant

training and testing datasets extracted from
security-related telecom language corpora.

[139]

Building a security-specific LLM
from scratch designed for detecting

network cyber threats, involving
several steps: data preparation, data

tokenization, model training, and
model deployment.

SecurirtBERT showcases the powerful
predictive capabilities of security-specific

LLMs in identifying various types of attacks,
significantly outperforming the traditional ML

and DL models.

[137]

Building a novel classifier of
cybersecurity feature claims (named

CyBERT) by fine-tuning a pre-trained
BERT language model [53] on

industrial control device documents.
A large repository is created to gather

industrial device information
encompassing 41073376 words.

CyBERT enables the effective identification
of cybersecurity claim-related sequences, with

an accuracy improvement of 19% in
comparison to the general BERT text

classifier [53].

[138]

Applying transfer learning to a BERT
model [53] to extract changeable

token embeddings from vulnerability
descriptions. A pooling layer is
positioned at the top to extract

sentence-level semantic features.

The exploitability prediction framework
(named ExBERT) not only accurately predicts

software vulnerabilities but also learns
sentence-level semantic features and captures

long dependencies within descriptions.

[140]

Applying a BERT model [53] to
tokenize URLs within HTTP requests

and then passing these tokens to a
multilayer perceptron model to

distinguish normal and anomalous
HTTP requests.

By integrating NLP with web attack detection,
BERT [53] demonstrates strong capabilities in

understanding web requests and SQL
language, achieving remarkable detection

performance that significantly surpasses that
of traditional ML detection methods.

Text
classification

[141]

It applied an AraBERT model to
classify telecom customer satisfaction
in Saudi Arabia by using the Twitter

dataset.

BERT-based model obtained more accurate
and stable results than conventional CNN and

RNN algorithms.

LLM techniques have inherent
advantages in processing

text-related tasks. Existing studies have
shown that the LLM can achieve a

comparable performance as existing CNN
or RNNs. It is promising for text-related

telecom tasks such as standard developing
and user feedback processing [142].

[13]

Fine-tuning several LLMs, e.g.,
BERT, distilled BERT, RoBERTa and

GPT-2, to the telecom domain
languages, and using them for 3GPP

standard classification problems.

With proper pre-processing and fine-tuning,
the experiment in [13] can achieve an 80%

accuracy even if only 20% of the text
segments are used.

Image
classification

[26]

It investigates the zero-shot image
classification capabilities of LLaVA

model, which means using the model
directly without any extra training.

The performance can be significantly
improved with a combination of carefully
crafted prompts, hierarchical classification

strategies, and adjusted model temperatures.

Images are important information
for telecom sensing. Enabling efficient image

classification can be very useful for
many telecom applications, including

vision-aided sensing, mmWave beamforming
[25], user localization [143], and so on.

[144]

Using LLM’s inherent knowledge to
generate descriptive sentences with

crucial discriminating characteristics
of the image categories.

This simple approach can effectively improve
the zero-shot image classification accuracy on

a range of benchmarks.

Network
traffic

classification

[145]

Capturing long-distance contextual
relations within traffic sequence

through BERT, and then integrating
packet-level token semantic features

at the forward and backward positions
of BiLSTM, which enhances the
BiLSTM attention to packet-level

features.

BiLSTM can capture relevant features of
front and rear token sequences after BERT

extracts general features of encrypted traffic,
learning the long-distance relations within

token sequences.

The LLM facilitate effective encrypted traffic
classification, a critical technique in telecom
network management while protecting data

and user privacy. Note that the assumption of
clean pre-training data presents challenges in
secure traffic classification. This vulnerability
is exposed particularly when attackers craft

a poisoned model with backdoors by inserting
low-frequency words as toxic embeddings.

Such manipulation allows attackers to deceive
the normally fine-tuned model during specific

classification tasks.

[146]

Building an Encrypted Traffic BERT
(named ET-BERT), which aims to
learn generic traffic representations

from large-scale unlabeled encrypted
traffic.

ET-BERT showcases strong effectiveness and
generalization across five encrypted traffic

classification tasks, e.g., General Encrypted
Application Classification [147], Encrypted
Malware Classification, Encrypted Traffic

Classification on VPN [148], etc.

semantics from the general linguistic language. This suggests
that a conventional LLM may find it challenging to fully
understand the specific vocabulary inherent to security-related
texts, potentially leading to limited generalization ability in
security applications. To this end, existing studies that employ

LLM techniques for attack detection can be categorized into
two primary directions as follows:

1) Fine-tuning pre-trained LLMs: Existing studies have
leveraged pre-trained LLMs and adapted them to achieve
specific security objectives through model fine-tuning [136].
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Fig. 8. Framework of LLM-based attack detection [139].

For instance, Aghaei et al. [136] introduce a specialized
cybersecurity language model named SecureBERT, which is
capable of processing texts with cybersecurity implications
and effectively applied across a broad range of cybersecurity
tasks, including phishing detection, intrusion detection, code
and malware analysis, etc. In particular, SecureBERT applies
a cybersecurity corpus comprising 1.1 billion words, divided
into 2.2 million documents, with each document averaging 512
words through the Spacy text analytic tool [154]. To build the
security-customized tokenizer, a byte pair encoding method
is employed to extract 50265 tokens from the cybersecurity
corpus to generate the initial token vocabulary. Among all
the extracted tokens, SecureBERT and RoBERTa [54] share
32592 mutual tokens, while SecureBERT identifies 17673
tokens specific to the cybersecurity corpus, including firewall,
breach, crack, ransomware, malware, phishing, and vulnera-
bility, among others. Each token is represented by an embed-
ding vector with dimensions identical to those in pre-trained
RoBERT, augmented with random Gaussian noise added to
the embedding factor of each token. SecureBERT emulates
the architecture framework of RoBERT [54], encompassing
twelve transformer and attention layers, which are trained
on the specifically collected corpus through the customized
tokenizer tailored to the unique task requirements.

SecureBERT is evaluated to predict masked security-related
words within a sentence, which is the task known as masked
language models. The testing dataset is generated by extracting
sentences from cyber-security reports with 17341 records. The
experiment shows that SecureBERT outperforms RoBERTa,
powerful model on general language, in predicting masked
words within a sentence with a security context, as illustrated
in the following examples [136]:

Comparisons between SecureBERT and RoBERTa in
masked tasks [136]

Task 1: “Information from these scans may reveal
opportunities for other forms <mask> establishing
operational resources, or initial access.”
SecureBERT: reconnaissance.
RoBERTa: early.

Task 2: “Search order <mask> occurs when an
adversary abuses the order in which Windows searches
for programs that are not given a path.”
SecureBERT: hijacking.
RoBERTa: abuse.

Task 3: “Botnets are commonly used to conduct
<mask> attacks against networks and services.”
SecureBERT: DDoS.
RoBERTa: automated.

The three predicted terms reconnaissance, hijacking, and
DDoS are prevalent in cybersecurity corpora. SecureBERT
accurately understands the security context to predict these
masked words, whereas RoBERTa exhibits incorrect predic-
tion, underscoring the advantages of SecureBERT in security-
related language tasks.

2) Building security-specific LLMs from scratch: In addi-
tion to fine-tuning, another strategy is to build an LLM from
scratch specifically designed for network-based attack detec-
tion. For example, Ferrag et al. [139] designed SecurityBERT
for detecting the ever-evolving cyber threat landscape, which
involves several steps: data preparation, data tokenization,
model training, and model deployment, as shown in Fig. 8.
In particular, the authors utilize a publically available dataset
EdgeIIoTset [155] related to the Internet of Things (IoT)
and Industrial IoT (IIoT) connectivity protocols, categorized
into five types of threats: DoS/D-DoS attacks, information
gathering, MITM attacks, injection attacks, and malware at-
tacks. Then, to leverage the power of LLMs, null features are
eliminated during the feature extraction in [139], and both

23



numerical and categorical features are converted into textual
representations. Specifically, each feature is combined with
its column name and value and then subjected to hashing.
The hashed values from the same instance are merged into a
sequence, which generates a fixed-length textual representation
of the network traffic data while maintaining privacy. After
that, ByteLevelBPETokenizer [156] is subsequently applied to
segment the textual representations of the network traffic data.
This segmentation process breaks down the text into smaller
subwords, expected to be found in the tokenizer’s vocabulary.
After the pre-training phase, the model is fine-tuned on a
labelled dataset [155] by adding a Softmax activation function
at the output layer, which allows SecurityBERT to enable the
learned contextual representations in the specific task of attack
detection. Finally, in the deployment phase of Fig. 8, once
attacks are identified through SecurityBERT, FalconLLM is
further employed to determine the severity and negative impact
of identified attacks, leading to the formulation of potential
mitigation strategies and recovery procedures.

SecurityBERT is employed to identify normal events and 14
distinct attacks in [139], such as DDoS UDP, DDoS ICMP,
SQL Injection, Vulnerability Scanner, etc. The experiment
shows that SecurityBERT achieves the average accuracy,
recall, and F1-score of 0.98, 0.84, and 0.84, respectively,
demonstrating the strong classification capabilities of security-
specific LLMs in identifying various types of attacks. In ad-
dition, SecurityBERT significantly surpasses the performance
of traditional ML and deep learning models such as decision
tree, convolutional neural networks (CNN), recurrent neural
network (RNN), and long short-term memory (LSTM).

Finally, to develop security-specific LLM technologies for
telecom networks, it is essential to initially create relevant
training and testing datasets extracted from security-related
telecom language corpora. Following model fine-tuning with
security-customized tokenizers, these language models can
significantly boost performance across various telecom se-
curity tasks, including cyber threat intelligence, vulnerability
analysis, and threat action extraction [157], [158].

C. Text Classification

Text classification and processing is a useful technique
for the telecom industry, and the applications include user
enquiries and intent classification and analyses [142], auto-
mated trouble report classification [159], standard specification
classification [30], and so on. In the following, we introduce
two applications in telecom customer feedback analyses and
specification classification.

1) Using LLMs for telecom user feedback classification
and analyses: Understanding user feedback is crucial for
telecom operators to improve the QoE and maintain customer
satisfaction and loyalty. For instance, Vieira et al. applied
CNN and LSTM networks in [142] for sentiment analysis
and topic classification, and the analysis proved that 78.3%
of the complaints are related to weak signal coverage, and
92% of these regions have coverage problems considering a
specific cellular operator. These analyses can be particularly

Fig. 9. Framework of LLM-aided 3GPP specification classification [13].

useful for telecom operators to improve service quality such
as signal coverage and strength. However, user feedback can
be complicated by involving service experiences, suggestions,
recommendations, and complaints. In addition, the feedback
can be collected from various sources, e.g., social media,
websites, phone calls, and company collection. These chal-
lenges require more advanced ML techniques to better classify
and capture user’s intentions. The LLM has shown superb
performance in a range of text-related tasks, e.g., question
answering, summarization, dialogue, and sentiment analysis,
outperforming many existing techniques even in zero-shot
settings. For instance, Aftan et. al applied AraBERT model
to classify telecom customer satisfaction in Saudi Arabia by
using the Twitter dataset [141], and the BERT-based model
obtained more accurate and stable results than conventional
CNN and RNN algorithms. In addition, using LLMs to analyze
customers’ experience and intent has attracted considerable
interest from both industry and academia, e.g., Microsoft has
proposed to use LLMs to generate, validate, and apply user
intent taxonomies [160]. Therefore, it shows great promise in
integrating LLM technologies into the telecom industry for
text-related classification tasks.

2) LLM-aided telecom standard classification: Telecom
standards refer to agreed-upon specifications that ensure the
interoperability, security, and reliability of telecom services.
Standards play a critical role in global telecoms [126], such as
3G, 4G, and emerging 5G for mobile communications, IEEE
802.11 for Wi-Fi, and ITU-T recommendations. For instance,
3GPP is the main organization for telecom standard develop-
ment, which includes three technical specification groups, and
each specification group consists of multiple working groups.
Given the large number of existing specifications with diverse
topics, Lina et al. proposed to use LLMs for specification
classification, classifying the text into an existing working
group automatically [13]. Fig.9 summarized the key processes
of using LLMs to classify the 3GPP specifications. With
proper pre-processing and fine-tuning, the experiment in [13]
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can achieve an 80% accuracy even if only 20% text segments
are used. The experiment results also prove that increasing
the length of technical text segments can significantly improve
classification accuracy.

Textual descriptions and documents are frequently involved
in the telecom industry, e.g., user comments, standard specifi-
cations, technical and troubleshooting reports, etc. Incorporat-
ing LLMs for text processing and classification will contribute
to more intelligent and reliable telecom networks.

D. Image Classification

Computer vision is an important approach for environment
sensing, and there have been many existing studies toward
vision-aided 6G networks. For instance, vision-aided blockage
prediction and beamforming are investigated in [25] and [161].
Specifically, the authors assume that the cameras attached to
the BS can capture the environment image and then use deep
learning to detect objects and 3D user locations. These studies
have shown the importance of incorporating computer vision
and image processing in telecom fields to better sense the wire-
less environment. Therefore, efficient image processing and
object classification are the prerequisites for realizing vision-
aided wireless networks. For example, Civelek et al. [162]
proposed an automated moving object classification technique
in wireless multimedia sensor networks, and such schemes can
also be exploited in previous studies such as [25] and [161]
for efficient object detection. In addition, Kim et al. propose
an edge-network-assisted real-time object detection framework
[163]. Specifically, the vehicles can compress the image based
on the region of interest and transmit the compressed one to
the edge cloud. Considering the limited computation resources
at the BS, this can be a useful technique for BS-edge-cloud
image processing and environment sensing.

The wireless environment can be very complicated with
walking pedestrians, moving vehicles, building blockages, and
other obstacles. Therefore, it requires dedicated model training
and fine-tuning to extract useful information and identify spe-
cific objects. LLMs have been pre-trained on a huge amount
of real-world datasets, and some LLMs, such as flamingo
[151] and GPT-4V [164], have proved versatile capabilities on
various vision-related tasks, e.g., using text to generate images,
describing given images, and object detection. For instance,
Matsuura et al. investigate the zero-shot image classification
capabilities of the LLaVA model [26], and they found that
the performance can be significantly improved with a combi-
nation of carefully crafted prompts, hierarchical classification
strategies, and adjusted model temperatures. Meanwhile, Pratt
et al. [144] also demonstrate that using LLM’s knowledge
can immediately improve zero-shot accuracy on a variety of
image classification tasks, saving considerable manual effort.
In addition, LLMs can also describe and summarize the
image content for further classification, documentation, and
processing, and an example is given in [17] by generating the
accident report of a car crash.

Finally, Fig.10 presents an example of using LLMs for
image classification and object detection in radio access net-

Fig. 10. Framework of LLM-aided computer vision in wireless networks.

works. In particular, the cameras attached to the BS can
capture environmental images, and then the image data will be
sent to the LLM at the network edge by wired backhaul. The
LLM can use computational resources at the edge cloud for
image processing, classification, and detecting object locations
such as vehicles, users, and blockage buildings. After that,
the edge cloud can send back the classification and detection
results to BSs, and then the BS can adjust the beamforming
and hand-off decisions accordingly.

E. Encrypted Traffic Classification

Network traffic classification is an essential technique in
telecom network management, which aims at identifying the
category of traffic from various applications [165]. Specifi-
cally, the widespread utilization of traffic encryption plays a
significant role in protecting data and user privacy. However,
it also presents challenges in capturing implicit and robust
patterns within encrypted traffic, which is essential for network
management. To tackle these challenges, conventional meth-
ods [147] usually extract features within encrypted traffic such
as certificates to create fingerprints for classification through
fingerprint matching, while these methods fall short with
the advent of advanced encryption techniques. Additionally,
existing ML-based studies [166] can automatically extract
complex and abstract features to analyze encrypted traffic,
resulting in notable performance improvement. However, these
methods are heavily dependent on the amount and distribution
of labelled training data, leading to limited generalization
ability due to model bias.

25



Fig. 11. Framework of LLM-based encrypted traffic classification [146].
”BURST” refers to a set of time-adjacent network packets originating from
the request or the response in a single session flow, and therefore a group of
BURSTs can characterize the network flow transmission patterns.

Recently, pre-training-based methods have achieved great
breakthroughs across a wide range of application fields. In
particular, pre-trained models are designed to learn data repre-
sentations from unlabelled data, allowing these representations
to be effectively applied to downstream tasks through fine-
tuning models on labelled data. In the context of encrypted
traffic classification, Ma et al. [145] capture long-distance
contextual relations within traffic sequence through BERT,
and then integrate packet-level token semantic features at the
forward and backward positions of BiLSTM, enhancing the
BiLSTM attention to packet-level features. BERT-BiLSTM
is evaluated to identify the types of network communication
application activities using the ISCX VPN dataset [167],
which includes various pcap files corresponding to different
application activities. The dataset is comprised of 17 label
categories, with each label representing a distinct type of
application activity, including Email, Facebook, Gmail, Net-
flix, SCP, Skype, Youtube, and Spotify, among others. BERT-
BiLSTM effectively distinguishes each application, achieving
an overall accuracy of 99.70%, precision of 99.34%, recall
of 99.51%, and F1-score of 99.43%, thereby surpassing the
performance of traditional ML methods. The performance en-
hancement further indicates the advantages of BERT-BiLSTM
in encrypted traffic classification: (1) BiLSTM captures the
relevant feature of front and rear token sequences after BERT
extracts general features of encrypted traffic, learning the
long-distance relations within token sequences. (2) BiLSTM
captures packet-level features and contextual relations by si-
multaneously integrating packet-level token semantic features
at both forward and backward starting positions of BiLSTM.

Moreover, Lin et al. [146] introduce Encrypted Traffic
BERT (ET-BERT), as shown in Fig. 11, which aims to
learn generic traffic representations from large-scale unla-
belled encrypted traffic. Concretely, Datagram2Token is first
utilized to convert traffic flow into word-like tokens, through
three steps: (1) BURST Generator extracts BURST time-

adjacent network packets representing the session information.
(2) BURST2Token applies a bi-gram model to convert the
datagram of each BURST into token embeddings and divides
a BURST into two segments for subsequent pre-training tasks.
(3) Token2Embedding merges the token embeddings, position
embeddings, and segmentation embeddings of each token as
the input representations for pre-training. To demonstrate the
effectiveness and generalization of ET-BERT, the authors con-
duct experiments across several encrypted traffic classification
tasks, e.g., general encrypted application classification [147],
encrypted malware classification, encrypted traffic classifica-
tion on VPN [148], with the remarkable improvements over
existing state-of-the-art methods by 5.4%, 0.2%, and 5.2%.

Although ET-BERT exhibits a strong generalization capabil-
ity across various tasks, the assumption of clean pre-training
data presents challenges in secure traffic classification. This
vulnerability is exposed particularly when attackers craft a
poisoned model with backdoors by maliciously inserting low-
frequency words as toxic embeddings. Such manipulation al-
lows attackers to deceive the normally fine-tuned model during
specific classification tasks. Hence, how to construct toxic
tokens within encrypted traffic can be potentially investigated
as a promising direction in the field of LLM-based encrypted
traffic classification.

F. Discussions and Analyses

Table VII summarized LLM-enabled classification tech-
niques in terms of the main features, prompt and fine-tuning
requirements, advantages, and network classification applica-
tion opportunities. It shows LLM’s versatile capabilities on
different classification tasks, ranging from textual security logs
and customer comments to images and network traffic files.

In particular, Section V-B demonstrates that LLM tech-
niques have great potential for telecom network security.
Security is an important topic for telecom operations, and
LLMs can contribute through their classification and detection
capabilities. In particular, the LLM can handle multi-modal
and heterogeneous network data, e.g., CSI, traffic load level,
network device logs and network configurations, and then
extract useful network security information from these cor-
related inputs. Additionally, some LLMs can also recommend
response and recovery strategies for network incidents [139].
This indicates the potential of building an end-to-end telecom
security system, from status monitoring and attack detection
to incident response and recovery.

Meanwhile, LLM can serve as a zero-shot classifier. Tele-
com networks indicate a complicated dynamic environment,
leading to various tasks. Existing methods are usually task-
specific, with dedicated designs for each incoming request.
By contrast, some LLMs have shown zero-shot classification
capabilities [26]. For instance, they can be directly used to
classify images captured by the cameras on the BS, or analyze
customer comments without prior training. Such a feature
can be very useful in handling diverse tasks in complicated
telecom systems such as object detection and user localization.
In addition, LLMs have outstanding capabilities in processing
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TABLE VII
SUMMARY OF LLM-ENABLED CLASSIFICATION FOR TELECOM.

LLM-based
forecasting
techniques

Main features Prompt and fine-tuning requirements
Advantages compared with

conventional approaches
Network classification

application opportunities

Attack
detection

Attack detection is vital for
maintaining the security and

reliability of telecom networks.
LLMs have showcased a strong
ability to capture discriminative
information within multi-modal

and heterogeneous network data.

Fine-tuning LLMs on security-specific
language emerges as a promising

approach for attack detection. This
method allows fine-tuned LLMs to

maintain their proficiency in
processing general English vocabulary
while excelling at achieving specific

security objectives.

LLM techniques have the strong
advantages of processing both

numerical traffic loads and
descriptive security-related textual

contents, e.g., ransomware and
keylogger, achieving better

performance than existing ML and
DL algorithms.

LLMs can be effectively
employed for detecting cyber

attacks [136], [139] and
contributing to the mitigation

and recovery strategies against
such attacks [139].

Text
classification

Text classification and processing
are very useful for the telecom

industry. LLMs have shown great
promise in understanding and
processing text and languages.

Fine-tuning LLMs on telecom
language is required, e.g., network
trouble report datasets and 3GPP

technical specifications. There are no
specific requirements for prompts.

Automatic text classification and
processing will greatly save

human efforts on many
document-related tasks, e.g.,

automated troubleshooting report
generation and ranking.

The telecom applications
include user enquiries and

intent classification and
analyses [142], automated
trouble report classification
[159], standard specification

classification [30].

Image
classification

Computer vision is a very useful
technique for 6G networks,
enabling 3D sensing for the

environment. Some LLMs have
shown impressive capabilities in
image and vision-related tasks.

The study in [26] shows that carefully
crafted prompts are critical to
improving the classification

performance of LLMs, e.g., ”Fill in
the blank, this is a picture of {...} ”.

However, fine-tuning LLMs on
telecom-image datasets can improve

classification accuracy.

LLM’s zero-shot learning
capability can avoid the

complexity of dedicated model
training. For instance, [26]

achieved a satisfactory
performance by pure prompt

engineering without any
fine-tuning.

LLM-aided image
classification can be used for

blockage prediction [161],
proactive beamforming and

hand-off [25], user
localization [143], etc.

Traffic
classification

Network traffic classification is an
essential technique in network

management and security, which
aims at identifying the category of
traffic from various applications.

LLM techniques have
demonstrated remarkable

performance in encrypted traffic
classification.

Fine-tuning LLMs on labeled network
data is crucial for ensuring their
adaptability across various traffic

classification scenarios, such as single
packet and single flow classification.

LLMs are capable of learning
generic traffic representations from

extensive amounts of unlabeled,
encrypted traffic without plaintext,

resulting in extracting valuable
insights from encrypted traffic for
downstream traffic classification.

Traffic analyses and
classification are very common

tasks in telecom networks.
LLMs can be effectively

applied for encrypted traffic
classification [145], [146].

text-related tasks, including both natural languages, such as
customer comments and system language like network log
files. These textual tasks are usually performed manually, but
LLMs can easily handle different classification and detection
tasks with much less human intervention.

Finally, LLMs can contribute to vision-aided telecom. Sens-
ing is increasingly important for wireless networks, and com-
puter vision is an important approach to capturing wireless
environment dynamics. With pre-trained real-world knowl-
edge, LLMs can be directly used for image and vision-related
tasks, such as image description, image-text transformation,
object detection, and image classification. In addition, LLM
technologies also have advantages over conventional algo-
rithms in terms of generalization capabilities. This means
that LLMs can process various telecom tasks without extra
training, e.g., blockage detection and prediction by using BS
cameras [161], proactive beamforming and hand-off [25], and
user localization [143].

VI. LLM-ENABLED OPTIMIZATION TECHNIQUES FOR
TELECOM

Optimization techniques are of paramount importance to
telecom network management, and this section presents LLM-
enabled optimization techniques. It first analyzes the mo-
tivations and optimization capabilities of LLMs, and then

introduces LLM-aided reinforcement learning, black-box op-
timizer, convex optimization, and heuristic algorithms along
with network optimization applications. Finally, we analyze
and summarize the key findings.

A. Motivations and Optimization Capabilities of LLM

Optimization problems have been widely investigated in
the communication field due to their critical importance.
Existing optimization techniques can be categorized into sev-
eral approaches [7]: ML-based, convex optimization, heuristic
algorithms, and black-box optimization. For instance, rein-
forcement learning is a widely considered ML algorithm
to solve optimization problems [4]. Meanwhile, fractional
programming is a well-known convex optimization technique
in wireless networks, e.g., decoupling signal strength with in-
terference and noise to maximize the data rate [168]. Heuristic
algorithms are particularly useful for solving problems with
integer control variables [169], and black-box optimization
is also a useful method to handle problems with unknown
objective function structure [170].

However, applying these techniques to telecom is not
straightforward. For instance, the reward function is an im-
portant part of implementing reinforcement learning, but the
corresponding design can be difficult without professional
knowledge of telecom. Moreover, the reward function may be
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related to multiple network metrics such as delay, throughput,
and packet drop rate, incorporating these metrics into the
reward function usually follows a time-consuming trial-and-
error manner [171]. Similarly, although there have been many
commercial convex optimization solvers, e.g., CPLEX and
LINDO [172], it is worth noting that optimization problems
have to be formulated in standard form, i.e., relaxing specific
constraints for convexity or continuity, which are considered as
obstacles for the application of convex optimization. To this
end, existing studies have shown that LLM may offer new
opportunities to overcome the theory-application gap between
existing optimization techniques and real-world telecom ap-
plications. There are multiple advantages to exploiting LLM-
enabled optimize techniques for telecom:

Firstly, LLMs demonstrate a strong ability to follow human
instructions. Specifically, the LLM agent has the potential
to formulate problems, design algorithms, select models, and
finally optimize the system performance based on human pref-
erences and language instructions [173]. With LLM-enabled
intelligence, operators can easily manage the network opera-
tion using simple natural language input, and then LLM can
automatically select proper ML algorithms to implement tasks
with minimum human intervention.

Secondly, LLMs can lower the training and fine-tuning
difficulties of ML-based network optimization. Algorithm
training is considered one of the main obstacles to realizing
AI-enabled wireless networks, which is usually very time-
consuming. By contrast, LLM has shown impressive few-shot
or even zero-shot learning capabilities in many fields [182]. In
particular, LLMs can learn in context from few or zero network
management and optimization examples and then generalize
to incoming new tasks. By providing a handful of examples,
the LLM agent can quickly learn the hidden patterns without
any extra model training and fine-tuning, saving considerable
time and effort for algorithm training in network management.
In addition, such fast learning capability is critical to make
rapid responses to network dynamics. This means that network
optimization decisions can be efficiently adjusted based on
traffic patterns, user types, and operator demands.

Finally, the rich real-world knowledge of LLM will con-
tribute to network optimization algorithm modelling and de-
sign. LLM is equipped with rich internalized knowledge
about the world in the pre-training stage [63]. Such diverse
knowledge can contribute to comprehending user preferences,
task requirements, and even optimization algorithm modelling
and design. For instance, LLM can already understand the fun-
damental concepts of reinforcement learning and linear pro-
gramming without any extra training, and both techniques are
very useful in optimizing telecom networks. This real-world
knowledge eliminates the gap between real-world network op-
timization demands and problem modelling and design. Table
VIII summarizes existing studies on LLM-aided optimization
techniques, including proposed methods, key findings, and
telecom application opportunities. Given these motivations and
the benefits of applying LLM to telecom optimization, we will
introduce state-of-the-art LLM-aided optimization techniques

along with telecom network optimization applications.

B. LLM-aided Reinforcement Learning for Network Optimiza-
tion

Reinforcement learning is one of the most important tech-
niques for network optimization. It explores various sequential
action combinations, e.g., network resource allocation strate-
gies and signal transmission power level, to maximize the
long-term reward, such as higher data rate or lower transmis-
sion delay [183]. Many network optimization problems can be
transformed into a unified Markov decision process (MDP),
and then using reinforcement learning to improve network
metrics dynamically. For instance, resource allocation is a
very common problem in many telecom scenarios, in which
allocation decisions, desired network performance metrics, and
network dynamics are usually defined as actions, rewards, and
states, respectively [6]. However, it is worth noting that these
definitions are usually intuitive and require expert knowledge
of reinforcement learning techniques and telecom. Especially,
most reward functions are manually designed using trial-and-
error approaches, and the algorithm performance is affected by
the hyperparameter selection, e.g., learning rate, batch size,
and number of hidden layers. Fortunately, LLM techniques
provide new opportunities to overcome these bottlenecks.
This section will introduce two LLM-aided reinforcement
learning techniques: automatic reward function design and
verbal reinforcement learning.

1) Using LLM for reward function design: A recent
survey in [27] shows that 92% reinforcement learning re-
searchers use manual trial-and-error reward function design
and 89% indicate that the designed rewards lead to unintended
behaviour during algorithm training [184]. Such issues become
more difficult in complicated telecom scenarios since various
network elements are involved, e.g., users with diverse re-
quirements, limited available resources, and dynamic network
environments. To this end, LLM shows the capability of
developing a universal approach for reward design, which
will significantly lower the difficulty of using reinforcement
learning. For instance, Song et al. [42] proposed a self-
refined LLM for automated reward function design in robotics,
achieving a comparable performance as manually designed
functions. Kwon et al. [43] applied LLM as a proxy reward
function, where the user provides a textual prompt with a
few examples or a description of the desired behaviour. In
the following, we will introduce how the automatic reward
function is designed.

An MDP can be defined as a tuple < S,A,R, T >, where S
and A are the set of environment states s ∈ S and actions a ∈
A, respectively. T is the transition probability with T (s, s′) =
Pr(s′|s, a), indicating the probability of taking action a under
state s and reaching the next state s′. R is the reward with R =
F(s, a), where F is the reward function that maps the states
and action selection to an immediate reward [185]. The reward
feedback R will further affect the action selection policy π
with a = π(s), which means the action selection is under
the current state s. However, the definition of such a reward
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TABLE VIII
SUMMARY OF LLM-AIDED OPTIMIZATION TECHNIQUES STUDIES.

Refer-
ences

Proposed LLM-aided optimization techniques Key findings & Conclusion Telecom application opportunities

[42]
A LLM framework with a self-refinement mechanism for

automated reward function design, where LLM can formulate
an initial reward function based on natural language inputs.

LLM-designed reward functions can rival
or even surpass manually designed reward

functions in 9 robot control tasks.
Reinforcement learning is very

useful for network optimization,
and automatic reward design

/universal proxy reward function
is an appealing approach to

lower the difficulty of applying
reinforcement leaning

techniques to various network
management scenarios.

[43]

It considers a universal reward design by prompting the LLM
as a proxy reward function, where the user provides a textual
prompt with a few examples or a description of the desired

behavior.

The generated rewards are well-aligned
with the user’s objectives and outperform

supervised learning approaches.

[44]

An LLM-aided reward design system with zero-shot
generation, code-writing, and in-context improvement

capabilities. It performs evolutionary optimization over
reward code.

It outperforms human experts on 83% of
the tasks, leading to an average

normalized improvement of 52%.

[174]

It proposed a novel framework to reinforce language agents
through linguistic feedback. The agent verbally reflects on
task feedback signals, maintaining the reflective text in an
episodic memory buffer to induce better decision-making.

The proposed framework achieves a 91%
accuracy on the HumanEval coding
benchmark, surpassing the previous

state-of-the-art GPT-4 that achieves 80%.

LLMs have self-improvement
capability, which means they can

work as an agent to receive
network environment feedback and

improve the policies
based on textual input.

[21]

LLM generates new solutions from the prompt that contains
previously generated solutions with their values, then the

new solutions are evaluated and added to the prompt for the
next optimization step.

The proposed prompt-design scheme
outperforms human-designed prompts by
up to 8% on GSM8K [175], and by up to

50% on Big-Bench Hard tasks [176].

[177]
Evaluating the optimization capabilities of LLMs across
diverse tasks and data sizes, including gradient descent,
hill-climbing, grid-search, and black-box optimization.

1) The LLM show strong optimization
capabilities; 2) LLMs perform well in

small-size samples; 3) They exhibit strong
performance in gradient-descent; 4) LLMs

are black-box optimizers.

Black-box optimizer is a promising
approach to estimating the unknown

loss function, which is especially
useful since telecom networks become

more complicated.

[178]

A natural language-based system that engages in interactive
conversations about infeasible optimization models. It

provides natural language descriptions of the optimization
model itself, identifies potential sources of infeasibility, and

offers suggestions to make the model feasible.

The proposed system can assist both
expert and non-expert users in improving
their understanding of the optimization

models, enabling them to quickly identify
the sources of infeasibility.

Convex optimization is a commonly
used technique for network

optimization, and integrating LLM
with convex optimization can bring

promising changes to network
optimization.

[179]
An LLM-aided system that can develop mathematical

optimization models, write and debug solver code, develop
tests, and check the validity of generated solutions.

It achieves nearly 0.8 success rate in 41
linear programming and 11 mixed integer

linear programming problems.

[180]
Using LLMs such as GPT-4 to generate novel hybrid swarm

intelligence optimization algorithms.

Generated a novel meta-heuristic
algorithm with pseudo-code by using 5

existing algorithms.
Heuristic algorithms are naturally
compatible with LLM techniques,
since many heuristic rules can be

easily described by textual language.
It offers new opportunities

for selecting and design new
heuristic network optimization methods.

[181]
Using general LLM serves as a black-box search operator for

decomposition-based multi-objective evolutionary
optimization in a zero-shot manner.

The LLM operator only learned from a
few instances can have robust

generalization performance on unseen
problems with quite different patterns and

settings.

function F is not straightforward since mapping the state s and
action a to a specific value requires considerable experience
and trial-and-error tests. Therefore, the objective of reward
design is to use LLM as a proxy reward function or generate
a reward function automatically [42], [43]. Given the above
MDP fundamentals, extra prompt input is required as textual
input for LLM. Consider a set of prompt string l ∈ L and a
mapping function M, we need to define:

• Task description l1: The string or environment code to
describe the target task [44];

• Objective description l2: The optimization objective or
desired final states of the task;

• States and actions description l3: It explains the definition
of states and actions in the target task;

• Examples description l4: It provides a trajectory or exam-
ples of the episode. Note that a trajectory usually serves
as a demo, but it is not required in zero-shot learning.

• A mapping function M that maps the textual output

of LLM to a binary value, e.g., ”good” or ”bad”. This
binary value feedback indicates the quality criteria of
the generation, and then the LLM easily understands the
overall feedback.

Given these definitions, the LLM-aided MDP definition be-
comes < S,A,R, T,L,M >, where L is a set of prompts l1
to l4, and M is the mapping function. The reward function
F in R = F(s, a) is defined by F := G(L,M), where G
is the inference of LLMs. F := G(L,M) shows that the
design of the reward function F depends on prompt input
L and the mapping function M. Based on the LLM-aided
MDP framework, using LLM for reward function design can
be summarized as the following steps:

• Step 1: Description input. Using language to describe the
task, objective, states, and actions. If necessary, providing
possible trajectory examples to LLMs. Here an alternative
approach is to feed the environment code to the LLM
agent, and then using natural language to describe the
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task, which has been used in [44].
• Step 2: Initial reward function design, which will use Step

1 as input, and produce initial reward function designs.
• Step 3: Reward function implementation. Using the re-

ward function produced in Step 2 to train the reinforce-
ment learning agent.

• Step 4: Evaluation and feedback. Evaluating the rein-
forcement learning training output and providing feed-
back to LLMs.

• Step 5: Self-improvement. Sending the feedback and
evaluation results to the LLM agent, and then LLM will
produce a new reward function design. Repeating from
Step 3 until the algorithm has the desired performance or
reaches the maximum iteration number.

To better explain how LLM-aided reward design can be
used for network optimization. Fig.12 shows the procedure of
solving a simple resource slicing problem [4]. In particular,
it considers resource allocation as an example with two types
of users. Group 1 indicates URLLC users that desire lower
latency and higher reliability, and group 2 represents enhanced
Mobile Broad Band (eMBB) users with high throughput
demands. As shown in Fig.12, the resource allocation task is
described by natural language as input for LLM, including task
description and user features, objectives, states and actions,
and reward design rules. Note that we use ”group 1” and
”group 2” instead of ”eMBB” and ”URLLC” to lower LLM
understanding difficulty. In addition, the features of the two
groups have been clearly defined. Then, LLM will generate
an initial reward function design and send the initial design
to the reinforcement learning framework for evaluation. After
that, we will receive and analyze the evaluation results, e.g.,
convergence and system metrics. For instance, the evaluation
results in Fig.12 show that the 5% drop rate of group 1 users is
much higher than the predefined threshold 1%, and therefore
the overall evaluation for this design is ”bad”. It is worth
noting that the final evaluation of ”good” or ”bad” depends on
the user’s predefined criteria, which varies between different
scenarios.

In Fig.12, if the evaluation result is ”bad”, then a detailed
feedback summary is provided with possible suggestions,
e.g., the drop rate of group 1 users is too high. Given this
feedback, the LLM agent will redesign the reward function
and repeat the process from Step 3. On the other hand, if the
evaluation result is ”good”, the system will output the final
reward function design. The bottom module also shows an
example that the reward function is improved by iterations.
e.g., the coefficient of Drop rate group1 is increased from
1 to 10, preventing dropping group 1 users. The coefficient
of Throughput avg group2 is also improved to balance the
latency and through metrics of two groups.

Reward function design is a prerequisite for applying re-
inforcement learning to telecom, and LLM-aided automatic
reward function design significantly lowers the difficulty. How-
ever, it is worth noting that some reward functions can be very
complicated in the telecom field, which may include transfor-
mation functions like arctan or sigmoid and diverse network

metrics. These design problems can be more complicated if
multiple network elements are simultaneously involved, such
as vehicle networks and RISs [7]. The simulations in [42]–
[44] have demonstrated LLM’s capabilities in reward design
for robotics and logic games, but the application in the telecom
field is still an open issue.

2) Verbal reinforcement learning via LLM: Section
VI-B1 proves that LLM can use the feedback to improve
previous solutions. Given this self-improvement capability, a
promising optimization technique is to consider LLM as an
agent, interacting with the environment to explore optimal
policy. Verbal reinforcement learning is proposed in [174], and
achieved satisfied performance across diverse tasks, including
sequential decision-making, coding, and language reasoning.
Fig.13 shows an example of using verbal reinforcement learn-
ing for radio access network optimization, and the agent
consists of the following modules:

• Actor: The actor is built upon an LLM, which is specifi-
cally prompted to generate actions, e.g., network control
and optimization strategies. Based on short-term and
long-term memories, the actor can apply various meth-
ods to produce actions, such as CoT [41] and ReAct
[186]. These advanced prompt techniques can improve
the actor’s capability of reasoning and planning, which
can better adapt to the complicated decision-making of
network optimization problems.

• Evaluator: The evaluator is a critical module to assess
the performance of the actor. In particular, it takes the
short-term trajectories as input and produces a reward
score that shows the action quality. The evaluator can be
defined in various approaches, e.g., a specified reward
function or heuristic criteria. For instance, in resource
allocation problems, the evaluator can be defined by a
reward function with network metrics, or a heuristic like
”all the users’ requirements have been fulfilled”. We
still consider the radio access network as an example.
The evaluator’s internal feedback could be ”The average
latency of network edge users is too high, and 10% edge
users’ communication demand is dropped. The overall
performance of this trajectory is bad.”

• Self-reflection: The self-reflection module is the most
important part of the verbal reinforcement learning
scheme, providing useful feedback instructions to the ac-
tor. Specifically, with external feedback from the environ-
ment and internal feedback from the evaluator, the self-
reflection module can generate more detailed feedback
to the actor, which is far more informative than a pure
reward value in conventional reinforcement learning. A
feedback example could be ”Cell edge users should have
more resources if available, and cell edge means users
that are far away from the BS than other users.”

• Short-term and long-term memories: The memory mecha-
nism consists of short-term and long-term memories. The
long-term memory indicates important lessons learned
from previous experience, while the short-term memory
shows recent decisions and performance. This is an
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Fig. 12. LLM for reward design in network optimization.

intuitive approach that is similar to the human brain
with fine-grain recent details and important lessons from
long-term memory. With the self-reflection mechanism,
the long-term memory will automatically learn important
rules, e.g., ”Cell edge users should have more available

resources; Type 1 users are delay sensitive, they should
have higher priority.”

Compared with conventional reinforcement learning, the
LLM-aided verbal learning technique has multiple advantages
for telecom optimization: 1) Lowering the difficulty of imple-
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Fig. 13. LLM-aided verbal reinforcement learning for network optimization.

menting network optimization. Verbal reinforcement learning
avoids the difficulty of tuning hyperparameters like learning
rate, batch size, and training frequency. This will significantly
lower the difficulty of applying artificial intelligence to net-
work optimization. 2) Allowing for language instructions to
guide network optimization policies. Specifically, the LLM-
aided system allows for language instructions to guide the
agent exploration, which is much more efficient than existing
strategies such as ϵ-greedy policy. Experienced network oper-
ators can provide language instructions to LLMs directly, and
no ML knowledge is required. 3) Reasoning and interpretable
explanations for algorithm performance. One crucial advantage
of LLM-aided systems is that they provide interpretable ex-
planations of the algorithm and telecom system performance,
and these experiences can further help understand network
management policies.

Despite the advantages, LLM-aided reinforcement learning
is still at a very early stage, and there are very few studies
that apply this technique to the telecom field. In addition,
specific telecom domain knowledge may be required to let the
LLM better understand user demand. Therefore, professional
wireless knowledge datasets such as TeleQnA in [125] may
be required to fine-tune the LLM.

C. LLM as a Black-box Optimizer

Black-box optimizer is also an appealing approach for net-
work optimization problems. It refers to the task of optimizing
an objective function f : X → R without access to any
other information about f , e.g., gradients or the Hessian [187].
Telecom networks will become more and more complicated in
the 6G era, and black optimization can avoid the complexity of
building dedicated optimization models. Existing studies have
shown that LLM has the black-box optimization capability to
fit an unknown loss function [177]. Fig.14 shows an example

of using LLM in a black-box manner. It starts by describing
the optimization task, and then LLM will generate an initial
solution. The generated solution will be evaluated by the
objective function evaluator, e.g., average or sum data rate,
average latency, etc. If the evaluated score is satisfied or it is
the maximum iteration number, then the system will output
the final solution. Otherwise, the current solution is sent to a
solution-score pairs pool, and a new prompt will be generated
accordingly for LLM as input. Here the solution-score pair
pool includes past experience and corresponding scores. By
comparing the similarities of high-score solutions, the LLM
can generate better solutions iteratively with few-shot learning
capabilities. To better understand how LLM can be used as
a black optimizer for network optimization, we provide an
example of BS power control [188]:

• Initial task description module:

BS power control task description

“We have an interference control task related
to wireless network management. We need to
control the power level of two BSs to maximize
the average data rate. We need you to provide the
transmission power of these two BSs, and adjust
the power based on provided feedback”.

• Prompt inputs module for black-box optimization:

Prompt input for black-box optimization

“Below are some previous power levels and the
corresponding data rate, which are arranged in
descending order.

Input: P level 1: 14 dBm, P level 2: 17 dBm;
Output Avg rate: 1.1 Mbps;
... ... ... ... ... ...
Input: P level 1: 22 dBm, P level 2: 15 dBm;
Output: Average data rate is 1.8 Mbps;
Input: P level 1: 25 dBm, P level 2: 22 dBm;
Output: Average data rate is 2.5 Mbps.

Give me a new power level input that is differ-
ent from all the traces above and has a higher
average data rate than any of the above”.

After the above prompts input, one can use the output to
update the candidate solutions and then repeat this process as
shown in Fig.14 until obtaining a satisfactory solution. The
main advantage of black-box optimization is that it avoids the
complexity of defining dedicated optimization models, which
have been used to automatically construct the wireless network
optimization model in [189], and to optimize cellular network
coverage and capacity in [190]. For the LLM-aided black-
box optimizer, the existing example quality may affect the
output results, and the algorithm performance cannot be guar-
anteed. However, telecom management usually has stringent
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Fig. 14. LLM-as a black-box optimizer for telecom.

requirements on solution qualities to guarantee the service
level, which can be an obstacle to using LLM techniques.

D. LLM-aided Convex Optimization for Telecom

Convex optimization is a crucial technique for telecom
networks, and it is commonly used in many scenarios [7].
For instance, fractional programming is especially useful for
wireless network optimization due to the fractional terms in
communication systems such as signal-to-interference-plus-
noise ratio (SINR) and energy efficiency, which is applied to
wireless power control and beamforming [168]. Convex opti-
mization can provide stable and efficient solutions, especially
when closed-form solutions are achieved. However, deploying
convex optimization techniques usually requires dedicated
problem modelling, transformation, and relaxation since the
original problems may be non-convex. Therefore, the require-
ment for expert knowledge may prevent the application of
convex optimization techniques. To improve the accessibility
of convex optimization, the authors in [178] propose to use the
LLM to diagnose the infeasibility of optimization problems,
aiming to relax or remove some infeasible constraints, and
LLM is used for convex optimization problem modelling, code
generation and solving in [179]. The experiments in [178]
and [179] have demonstrated that LLM has the potential to
improve convex optimization techniques.

Fig.12 shows the key steps of using LLM to solve network
convex optimization problems with the following modules:

• Problem modelling and description: Transforming the
network optimization problem into a standard form is the
first step of automatic problem modelling. Fig.12 presents

some key elements of defining the problem, including
problem type, problem information, input and output
format, objective and solvers. Specifically, problem type
specifies the type of this problem, e.g., linear program-
ming, mixed-integer linear programming, quadratic pro-
gramming, etc. Problem information includes the core
description of the problem, which defines the relationship
between input and output variables. Then, input and
output variables show the expected input and output
variables along with definitions, i.e., network decision
variables and output metrics. Objectives and solvers give
the optimization objective and applied solvers. Such a
standard form and description will lower the difficulty of
LLM understanding.

• Telecom knowledge and formulation templates: Telecom
optimization requires professional network knowledge.
LLM has learned fundamental knowledge in the pre-
training period such as calculating information capacity
using Shannon’s formula. However, using state-of-the-art
telecom knowledge and formulation templates to fine-
tune the LLM can better improve the modelling accuracy.
For instance, a dataset named TeleQnA is defined in
[125], and it includes nearly 10000 communication field
questions from both standards and research articles.

• LLM and Solvers: Existing studies have shown that LLM
can use the advanced features of existing solvers such
as Gurobi and cvxpy to solve the problems [191]. For
instance, [179] observed that LLM can use the function
gurobi.abs to model L1-norm objective instead of adding
auxiliary constraints and variables. It demonstrates that
LLM has the potential to take advantage of existing
solvers to address complicated optimization problems. In
addition, if the implementation fails, code-fix templates
can also be included to address the issues automatically
and rerun the test.

In summary, Fig.15 shows an example of solving network op-
timization problems in an end-to-end manner. Given a proper
problem description, the LLM-aided system can automatically
model the problem, generate code, and call the server to solve
and debug the problem. Such a scheme has been used in [179]
to solve 41 linear programming and 11 mixed-integer linear
programming problems and achieved a nearly 0.8 success rate
for small-scale problems using GPT-4. The study in [179] also
observed that the success rate could be further improved by
adding supervised tests and data augmentation.

Despite the great potential, it is worth noting that telecom
networks have become more and more complicated, and there
are many complicated large-scale and non-convex optimization
tasks. For example, RIS-related optimization problems usually
include multiple control variables, e.g., RIS phase-shift control
and BS passive beamforming, which are usually optimized in
an alternating approach. It still requires dedicated human effort
to transform the problems into standard forms [114]. However,
LLM-aided automatic convex optimization is still a promising
approach that will save human time and effort on network
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Fig. 15. LLM-aided Convex Optimization Problems.

optimization problem modelling and solving.

E. LLM-based Heuristic Algorithm Design

Heuristic algorithms are very useful techniques for network
management and optimization. Specifically, they apply diverse
heuristic rules to select near-optimal solutions with low design
and computational complexity [192]. Heuristic algorithms are
particularly useful for solving optimization problems with
integer control variables, which are very frequently formulated
in telecom. For instance, the phase-shift optimization of RISs
is considered as a very difficult problem with integer control
variables and large solution space, and genetic algorithms
and particle swarm optimization are used in [193] and [194]
to solve this problem. In addition, heuristic algorithms are
intuitively compatible with LLMs, since heuristic rules can
be easily described by natural language and instructions.
For example, swarm-based methods are very widely used
heuristic algorithms, e.g., genetic algorithm, particle swarm
optimization, and grey wolf optimizer, providing near-optimal
solutions by iteratively searching for better solutions. However,
the number of these algorithms has grown significantly in
the past decade, and selecting the proper algorithm to solve
specific network optimization problems has become more
difficult. Given the reasoning and understanding capabilities,
LLM offers promising changes for selecting and designing
novel meta-heuristic algorithms.

Fig.16 presents an example of using LLM to design novel
swarm-based meta-heuristic algorithms for network optimiza-
tion, which consists of 5 tasks. Such a decomposition and CoT
approach can considerably lower the prompt difficulty and
improve output performance [180]. The first step is to identify
the key requirements of optimization tasks. For example,
RISs consist of hundreds of small units, and each requires
dedicated phase-shift control, leading to a large solution
space. Therefore, Prompt 1 in Fig.16 requires the candidate
algorithm to have “good exploration capabilities”, and the
first instruction is to “Please list 5 candidate algorithms”.
Then, the next task is to identify the key components of

these algorithms. For instance, inertia weight and local and
global best mechanisms are two key components in particle
swarm optimization, and then LLM can better understand the
functionality of each unique heuristic rule. After that, Tasks 3
and 4 will generate the step-by-step design and pseudo-code
of a new swarm-based meta-heuristic optimization algorithm.
Most importantly, Task 5 will take full advantage of LLM’s
reasoning capability, and explain how this novel algorithm is
designed with step-by-step motivations.

In summary, Fig.16 presents an automatic approach for
novel meta-heuristic algorithm design, which can be very
useful for telecom network control and optimization. For in-
stance, many network control scenarios require rapid responses
for environment dynamics such as traffic load level and user
demand changes, and LLM-aided systems in Fig.16 have
the potential to generate novel heuristic algorithms with fast
convergence and low computational complexity. Additionally,
such a scheme can also be used to generate new heuristic net-
work protocols or management policies, significantly saving
human efforts in terms of creation and design [30].

F. Discussions and Analyses

Subsections VI-B to VI-E have introduced various LLM-
aided optimization techniques along with telecom applica-
tions. Table.IX summarizes various LLM-aided optimization
techniques, including main features, prompt and fine-tuning
requirements, advantages compared with existing approaches,
and network optimization application opportunities. In the
following, we summarize our key findings and analyses.

Firstly, task description is crucial for network optimization.
Task description is the first step of using LLMs, which requires
accurate and standard input, e.g., input and desired output
format, objective and specific rules. In addition, these tasks
are usually closely related to telecom domain knowledge, and
LLM may have difficulty understanding some professional
concepts. For example, in Section VI-E, the LLM may already
have some general knowledge of RIS technology, but they
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Fig. 16. LLM-aided meta-heuristic algorithm generation.

are unable to directly understand the difficulty of RIS phase-
shift control, which is a very professional domain-specific
knowledge. Therefore, the task description has to be care-
fully designed, which will directly affect the LLM output.
Meanwhile, prompt design is the key to network optimization
problems. Previous sections have demonstrated that prompt
is one of the most important approaches to take advantage
of LLM’s capabilities, and there have been various prompt
engineering techniques, e.g., CoT [41], ReAct [186], zero-shot
instruction [195], etc. Therefore, understanding the function
of prompt engineering is crucial for applying LLM to solve
optimization problems. For instance, in reward design prob-
lems, the feedback prompt is critical to improve the reward
design step by step. In the heuristic algorithm design problem
in Section VI-E, the output completely depends on the user
prompt input to the LLM agent.

In addition, several of the above optimization approaches
rely on the feedback mechanism, in which the solutions are
iteratively improved based on previous answers and environ-
ment feedback. For instance, the reward function design is
iteratively improved by involving the evaluation results and
feedback prompts. Similarly, in verbal reinforcement learning,
the LLM agent can adjust the action selections to obtain a
higher reward based on environmental feedback. Therefore,
the design of these prompts is crucial for improving LLM’s
performance, e.g., dedicated feedback and evaluator prompt
designs. On the other hand, balancing exploration-exploitation
is a common obstacle for many optimization problems. This
problem becomes severe when the action space is larger,
which is very common in telecom networks. Therefore, how
to use the LLM’s self-improvement capability and meanwhile
balance the exploration-exploitation is very important.

Finally, note that many optimization problems can be very
complicated in wireless networks by involving multiple control
variables, network elements and layers. It may require step-
by-step problem decomposition, formulating multiple objec-
tives, and alternating optimization, e.g., jointly optimizing the

transmission data rate and signal coverage. Handing these op-
timization problems needs strong planning capabilities, which
is still a challenge for current LLM research fields.

VII. TIME SERIES LLM FOR PREDICTION PROBLEMS

Prediction tasks are crucial in telecom networks that in-
volve predicting future trends, demands, and behaviours based
on historical data, e.g., predicting network traffic, customer
demand, equipment failures, and service usage. This section
will introduce time series models for prediction problems in
wireless networks, including pre-training foundation models,
frozen pre-trained, fine-tuning, and multi-modality LLMs.

A. Motivations

Conventional prediction algorithms in the telecom domain
rely on statistical and time-series analysis to estimate the
output. However, telecom data is usually non-linear, non-
stationary, and influenced by various external factors, leading
to challenges in capturing complex patterns and relationships.
While these traditional methods have been effective to some
extent, they may struggle with the complexity and dynamic
nature of telecom data. Recently, LLM technologies have
shown promise in addressing the challenges of time-series
prediction due to their ability to handle complex data structures
and adapt to changing patterns.

Firstly, LLMs provide a universal and generalizable model
for telecom network prediction. Given historical data, con-
ventional prediction approaches must train a new model to
adapt to incoming target tasks. These methods usually require
extensive feature engineering and manual tuning, which can be
time-consuming and may not generalize well across different
scenarios. By contrast, the versatility of LLMs makes them
suitable for processing diverse forms of time-series data, and
such adaptability is crucial given the vast volumes of data
generated in telecom. Moreover, LLM’s capability to contin-
uously learn and adapt to new data patterns helps mitigate
the concept drift problem, ensuring that the models remain
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TABLE IX
SUMMARY OF LLM-BASED OPTIMIZATION TECHNIQUES FOR TELECOM.

LLM-based
optimization
applications

Main features Prompt/ Input
requirements

Advantages compared
with existing approaches Potential issues Network optimization

application opportunities

LLM-aided
reward

function design

Reward function is a
crucial part of
reinforcement

learning-enabled network
optimization, and LLM

provides automatic
reward function design

by using its
self-improvement and

understanding
capabilities.

Task/environment
description; Objective
description; States and
actions; Examples or
demos. A mapping
function/criteria to

evaluate the design to
”good”/”bad”.

Automatic reward function
design can significantly

save human effort in
applying reinforcement

learning to network
optimization tasks.

Automatic reward function
design has produced

comparable performance
as human manual design.

1) Automatic reward
design is still at a very

early stage, and there are
few applications that
explore such a novel

technique in the telecom
field; 2) The prompt has

to be carefully designed to
describe the target task,

which is known as prompt
engineering.

Reinforcement learning is
a very useful technique for

telecom network
management, and

automatic reward design is
a promising technique to
enable artificial general
intelligence, which is
particularly useful for

small-scale optimization
problems to save human

effort.

Verbal
reinforcement

learning

It considers LLM as an
agent, exploring the

environment and
accumulating

experiences. Using the
self-improvement

capability to improve
previous solutions and
obtain a higher reward.

1) Self-evaluator will
provide critical

feedback to the actor
for improved

performance; 2)
Short-term and

long-term memories
are crucial for the
actor to distinguish

between good and bad
actions.

1) Avoiding the difficulty
of tuning hyperparameters

like learning rate, batch
size, and training

frequency; 2) Allowing for
language instructions to

guide network
optimization policies; 3)
Providing Reasoning and
interpretable explanations

for algorithm performance.

1) The evaluator and
self-reflection modules

have to be carefully
designed to generate

useful experience; 2) It
may have

exploration-exploitation
difficulty, since the agent

relies on previous
experience to produce new

solutions.

Verbal reinforcement
learning can be very useful
for solving problems that
have been well-defined

with small action spaces
and immediate rewards,

which is very common in
telecom networks, e.g.,
resource allocation and

association.

LLM as a
black-box
optimizer

Black-box optimization
is a useful approach for
network optimization,

and LLM has been
demonstrated to have the
black-box optimization

capability to fit an
unknown loss function.

1) Task description; 2)
Previous input and

output examples, and
then asking for a

better solution based
on previous input and

output.

Black-box optimization
avoids the complexity of

building dedicated
optimization models and

transformations, which can
be very time-consuming in

complicated telecom
network environments.

The performance of using
an LLM black-box
optimizer cannot be

guaranteed, which relies
on the quality of the

provided input and output
examples.

Black-box optimization is
a promising technique for

telecom network, but it
may have difficulty
providing stable and
reliable results. The

reasoning capability of
LLM may shed light on

solving this problem.

LLM-enabled
convex

optimization

LLM provides
end-to-end automatic
solutions for convex

optimization techniques,
including problem
modelling, code

generation, and solver
implementation.

1) The problem has to
be defined in standard
form, so then the LLM

can understand and
model it; 2) Telecom

knowledge and
formulation template

are required; 3)
Existing solvers have
to be specified for the

LLM to solve the
problem.

1) Automatic problem
modelling is an especially

promising technique,
significantly saving human

effort; 2) It enables
automatic problem-solving
in an end-to-end manner,

requiring minimum human
intervention.

Some convex optimization
problems in the telecom

field are extremely
complicated with coupled

control variables and
highly non-convex

objectives and constraints.
These problems can be
very difficult to solve

automatically.

Many network control
problems can be

formulated as convex
optimization problems,
and LLM-aided convex
optimization has great
potential to solve these

problems efficiently with
much less human effort.

LLM for
heuristic

algorithms

Heuristic algorithms are
inherently compatible

with LLM, since many
heuristic rules can be
easily described by

natural language. LLM
offers opportunities for

heuristic algorithm
selection and design for

specific network
optimization tasks.

It may require a series
of prompts in a CoT

manner, including
candidate algorithm
selection, analyses,
new algorithm and
pseudo-code code

generation, and
reasoning.

Automatic heuristic
algorithm selection and
design will considerably

save human time on
algorithm analyses and

design. It can also provide
reasoning and analyses of

the generated results.

The generated heuristic
algorithms still need to be
tested and verified. Such

an automatic design
cannot guarantee the
performance of the
algorithm that was

produced.

Heuristic algorithms are
widely used for telecom

network optimization and
management, and LLM

has promising potential for
heuristic algorithm

selection and design,
producing novel

algorithms that can better
serve telecom networks.

relevant and effective over time. As a result, the integration of
LLM techniques in time-series prediction offers a promising
avenue for developing more robust and generalizable models
that can better handle the complexities of data in telecom.

Meanwhile, LLMs have excellent ICL capabilities, which
means that they can perform new tasks by leveraging con-
textual information in demonstrations. In particular, it means
that the LLM can directly learn from the provided examples,

and map the input-output relationships without extra model
training. Such a prediction method is much more efficient
than conventional prediction methods. Meanwhile, it is also
more accessible since no professional knowledge of model
training/fine-tuning is required. In addition, multi-modal LLM-
enabled prediction can also be combined with sensing in tele-
com networks. In particular, multi-modal LLMs can process
and integrate information from various data types, such as text,
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images, audio, and time-series data. In addition, sensing is an
important part of envisioned 6G networks, aiming to integrate
environmental information into communication networks, e.g.,
the image captured by street cameras or satellites, 3D LiDAR
maps and WiFi sensing. In the context of telecom prediction,
multi-modal LLMs can combine sensing data with numeri-
cal time-series data to generate more accurate context-aware
prediction, which can be particularly useful in 6G.

Given the great potential, it is important to investigate time
series LLM techniques and applications in telecom networks.
In the following, we will introduce various LLM-based pre-
diction methods and applications to telecom networks.

B. Pre-training Foundation Models for Zero-shot Prediction

The pursuit of training a general-purpose foundation model
for time-series data is driven by the desire to address the
inherent challenges associated with diverse and dynamic data.
Traditional time-series methods may struggle to adapt to
the non-stationary properties of real-world data, where the
statistical characteristics of the series can change over time
due to evolving patterns and trends. For instance, the network
traffic load level can be affected by many factors, including
time, area, environment buildings, service types, etc. It usually
requires dedicated model design and training for each target
task, and then extracts the underlying patterns from history
datasets [197]. By contrast, a general-purpose foundation
model aims to overcome these challenges by leveraging the
advancements in LLM technologies. The following will first
formulate the problem of training a foundational LLM for
time-series prediction, and then discuss different tokenization
mechanisms and model architectures.

1) Problem formulation: The primary goal of a founda-
tion model is to design a zero-shot forecasting scheme that
utilizes the past t time points of a time series as input to
predict the future h time points. Let the input context be
y1:L := {y1, . . . , yL} and the prediction horizon be yL+1:L+H .
The model, denoted as fθ (parameterized by θ), aims to map
the context to the horizon, i.e., fθ : (y1:L) → ŷL+1:L+H . In
this setting, the prediction model fθ maps the feature space
X to the dependent variable space Y . The spaces are defined
as X = {y[0:t], x[0:t+h]} and Y = {y[t+1:t+h]}, where h is
the prediction horizon, y is the target time series, and x are
exogenous covariates. The prediction task is to estimate the
conditional distribution:

P(y[t+1:t+h]|y[0:t], x[0:t+h]) = fθ(y[0:t], x[0:t+h]) (1)

2) Tokenization mechanisms: Motivated by ViT [198],
many existing works use patching to convert the raw input
sequences to tokens. In particular, each time series x[0:t]

is segmented into a series of patches, which may overlap
or be distinctly separate. The patch length is denoted as
P , and the stride, representing the non-overlapping interval
between consecutive patches, is denoted as S. Consequently,
this patching technique produces a sequence of patches xp ∈
RP×N , where N denotes the number of patches, calculated by
N =

⌊
L−P
S

⌋
+ 2. Before patching, S repetitions of the final

value xt are appended to the sequence’s end. This tokenization
mechanism effectively reduces the number of input tokens
from L to roughly L/S, which significantly diminishes the
memory space consumption and computational intensity.

3) Model architecture: Most existing works employ either
encoder-decoder or decoder-only architecture as the backbone
model to train a time-series foundation model.

Encoder-decoder: The encoder-decoder transformer archi-
tecture stands out for its remarkable efficiency and efficacy,
primarily attributed to its self-attention mechanism [50]. Fig.17
shows an example named TimeGPT that exemplifies the
application of the encoder-decoder transformer for prediction
problems [196]. In particular, TimeGPT inputs a historical
sequence of data points to predict future values. The inputs
are added relative positional embedding, which demonstrates
higher capability to handle long sequences than the original
absolution positional embedding of the transformer [50]. Its
encoder captures temporal dependencies within the historical
context, encoding it into a latent space, while the decoder
utilizes this encoded information to predict future values. As
shown in Fig.17, with its specialized architecture, TimeGPT
can address the intricacies of time-series data, such as trends
and seasonality, which makes it an ideal model for telecom
time-series predicting such as network traffic load, channel
state, user mobility, etc. Once pre-trained, such a universal
model can be used for various prediction tasks without extra
training. By contrast, conventional methods such as RNN and
DNN are usually task-specific, and training a new model from
scratch for each incoming new task is time-consuming.

Decoder-only: Even though encoder-decoder models ex-
hibit impressive effectiveness for handling sequences, decoder-
only models become more popular in recent years. Like the
encoder-decoder architecture, the decoder-only model must
first tokenize the raw inputs and then incorporate posi-
tional embeddings. The essential difference between encoder-
decoder and decoder-only models is that the bidirectional
attention is used by encoder [50], which means each token
is attending to all other tokens. In contrast, the decoder-only
model employs casual attention, where each token cannot
attend to tokens after it, but can only look at tokens before it.
The causal attention mechanism enhances prediction models
because it is well-suited for time-series forecasting tasks.
In time-series forecasting, we typically predict future values
based on historical data. Causal attention allows each token
to consider all preceding tokens, meaning it attends to all
events that occurred before the current time frame. Moreover,
with these small modifications, the attention score matrices
in decoder-only models are triangle matrices, which always
have full-column rank, resulting in better expressibility [199].
As shown by Fig.18, TimesFM [200] employs decoder-only
architecture to train a time-series prediction model. Unlike tra-
ditional LLM techniques, which predict one element at a time,
TimesFM is designed to predict extended future sequences in
a single step, enhancing accuracy for long-term predictions.
This flexibility also extends to inference; given a series, the
model can predict its immediate future in fewer steps than
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Fig. 17. Encoder-decoder-based TimeGPT for prediction problems in telecom networks [196].

a model with equal-length input and output segments would
require. Such fast inference could be an appealing feature for
telecom applications, because many prediction tasks require
rapid response to network dynamics, such as channel state,
short-term traffic changes, and indoor user locations. Conven-
tional prediction methods usually take a long training time
to adapt to such network environment changes. By contrast,
TimesFM has the potential to capture short-term patterns
instantly, which aligns with the fast-response requirements of
telecom networks.

In summary, the key differences between encoder-decoder
and decoder-only architecture can be found by comparing
Fig. 17 and Fig. 18. In particular, the encoder-decoder design
in Fig. 17 includes an encoder to encode the raw features
into latent representations by using bidirectional attention. In
contrast, the decoder-only scheme in Fig. 18 illustrates causal
attention, e.g., the first token is attended by all other tokens,
and the second token is attended by all except the first token.

With a backbone model and an effective tokenization mech-
anism, one can train a time-series prediction foundation model
for telecom with a mixture of different datasets. Meanwhile,
understanding the tokenization and model architecture differ-
ences is crucial for designing and pre-training a time series
LLM for telecom applications. For instance, the tokenization
mechanism introduced in the previous Section VII-B2 is very
useful for telecom applications, since telecom networks are
associated with a large number of network devices and end
users, generating a huge number of datasets, such as histor-
ical CSI, traffic load level [201], and network performance
metrics [202]. Therefore, reducing the number of input tokens
can lower the pre-training difficulty of LLMs, especially
considering that network edge devices usually have limited
computational resources.

C. Frozen Pre-trained LLM for Prediction

Rather than developing a specific LLM for prediction,
frozen pre-trained LLM refers to approaches that directly adapt

Fig. 18. A decoder-only model named TimesFM for time-series prediction
proposed in [200].

a general-domain LLM to prediction tasks. This section delves
into using a pre-trained LLM for prediction tasks without
the necessity for further fine-tuning. There are two primary
approaches: prompting-based and preprocessing-based meth-
ods. Specifically, the prompting-based methods include hard
and soft prompts. Hard prompts employ rigid and predefined
textual structures to present time-series information in a format
that is intuitive for the language model. Conversely, soft
prompts adopt a more nuanced strategy by integrating trainable
embeddings within the input that subtly guide the language
model’s predictions. Meanwhile, preprocessing-based meth-
ods aim to reformat the time series numerical values into
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a representation that aligns more seamlessly with LLM’s
tokenization process, rather than introducing extra template
tokens or trainable embeddings.

1) Prompting-based methods In leveraging prompt engi-
neering, two predominant prompting strategies are utilized:
hard prompts [203] and soft prompts [204].

Hard prompts (Phard) involve pre-pending a fixed textual
instruction and query to the input data sequence, or fit the raw
input data into a carefully designed template. In this way, we
can transform numerical values into textual contexts that can
be processed by pre-trained large language models. By lever-
aging the impressive generalizability of pre-trained LLMs,
hard prompting techniques can yield high prediction accuracy
in zero-shot settings. Specifically, the model input for a time-
series x[1:T ] with a hard prompt is thus formalized as the con-
catenation [Phard;x[1:T ]], which directs the model to generate
a prediction in response to the prompt. When designing hard
prompts for time-series prediction with language models, the
general guideline is to transform numerical data into a format
that mimics natural language constructs [203]. This involves
two main components: input prompts and output prompts.
Input prompts provide historical context and highlight the
target time step for prediction, while output prompts focus on
the desired prediction value, serving as the ground truth label
for training or evaluation. Table X presents several telecom
examples of designing hard prompts for specific tasks, such
as network traffic load prediction, network user number predic-
tion, and customer service prediction. The process mirrors the
source/target structure common in machine translation tasks
or can be likened to a question-answering setting, with the
context as background information and the question seeking
future insights. Then the output prompt becomes the answer
to this query, such as ”the number of active users, traffic
load level at specific times, and predicted customer calls next
week”. According to PromptCast [203], this simple approach
achieves comparable or superior prediction accuracy across
various datasets, demonstrating its effectiveness on bridging
the gap between raw numerical sequences and language-based
data representations, further facilitating the use of language
models for prediction tasks traditionally handled by numerical
methods.

Conversely, soft prompts (Psoft) introduce trainable em-
beddings that are optimized during training to influence the
model’s prediction subtly [47]. The input for a soft prompt
is represented as [Psoft;x[1:T ]], where Psoft constitutes a series
of parameters that are fine-tuned to enhance the predictive
capability of the model. This adjustable approach allows
the model to internalize and apply nuanced guiding signals
without the rigidity of fixed textual cues. Fig. 19 shows an
example of using soft prompts in [47]. TIME-LLM utilizes
two types of inputs: a textual description of domain knowledge
with some in-context examples, and a time-series input. The
textual description is tokenized and processed through the
embedding layers of the pre-trained LLM to generate latent
representations, termed as prompt embeddings. When a time-
series input is received, it is tokenized and embedded through

Fig. 19. The model framework of TIME-LLM with soft prompt [47].

a method called patching, which includes a specialized embed-
ding layer (patch reprogram), resulting in patch embeddings.
The pre-trained LLM then takes the concatenated prompt and
patch embeddings as inputs and produces outputs via an output
projection layer. Throughout this process, all parameters of
the pre-trained LLM remain frozen, requiring training only
for the custom embedding layer to connect the time series
and textual data. When designing soft prompts for time-series
prediction using a pre-trained LLM, there are a couple of
guiding principles and design choices. Unlike hard prompts,
soft prompts require no explicit textual additions to the input
data. The general approach involves encoding time series
data into a format that the LLM can process, harnessing
its underlying capabilities to discern patterns and generate
predictions. To utilize soft prompts prediction for telecom
efficiently, one might consider the specific characteristics of
the telecom time-series data, such as traffic patterns or usage
trends, to design the transformation and reprogramming steps
that align the time-series data with the model’s language
understanding capabilities.

2) Preprocessing-based Methods The preprocessing-based
method leans on the LLM’s inherent ability to detect and
follow patterns within generalized sequences, devoid of re-
liance on any specific language structure. In particular, when
numerical values are adeptly transformed into textual strings,
prediction with the model adheres to standard language model
sampling methods. Therefore, tokenization plays a pivotal role
because it shapes the model’s perception of numerical patterns.
LLMTIME [45] proposes two ways to preprocess the raw data:

• Introducing extra space: For example, GPT-3’s to-
kenizer might dissect the number 42235630 into
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TABLE X
THREE HARD PROMPT EXAMPLES FOR PREDICTION TASKS IN TELECOM.

Network
traffic load
prediction

Input prompt (source) From {t1} to {tobs}, network {Um} experienced {xt1:tobs} GB of traffic each hour.
Question What will the data traffic be on {tobs+1}?
Output (target) The network will experience {xtobs+1} GB of traffic.

Network
users

prediction

Input prompt (source) From {t1} to {tobs}, the BS had {xt1:tobs} active connections each day.
Question What will the BS utilization be on {tobs+1}?
Output (target) The BS will have {xtobs+1} active connections.

Customer
service

prediction

Input prompt (source) From {t1} to {tobs}, customer service received {xt1:tobs} calls each week.
Question How many service calls will be received in the week of {tobs+1}?
Output (target) There will be {xtobs+1} service calls received.

[422, 35, 630], which complicates arithmetic operations.
To address this, a preprocessing step is introduced where
digits are separated by spaces, and time steps by commas,
ensuring uniform tokenization of each digit: ”4 2 2 3
5 6 3 0”. With this small change, the tokenizations are
completely different. Each digit now is processed by the
model individually.

• Eliminating decimal points and rescaling Given a
fixed precision, the decimal points are redundant and
unnecessary. Decimal points are excluded under fixed
precision to optimize context length, transforming a series
”0.123, 1.23, 12.3, 123.0” into ”12, 123, 1230, 12300”. It
provides a straightforward approach to processing the
inputs.

In terms of telecom application potentials, these two prepro-
cessing techniques provide a simple but efficient approach
to using LLM techniques for prediction. They eliminate the
need for careful designs of prompts, which can better adapt
to various prediction tasks in telecom. Preprocessing-based
methods have the potential to generate prediction results
instantly based on given raw network data input.

D. Fine-tuned LLM Prediction

Fine-tuning pre-trained LLMs presents a significant ad-
vancement for time-series prediction, offering a powerful
alternative to traditional prediction approaches [205], [206].
General-domain LLMs, initially pre-trained on extensive lin-
guistic data, can be fine-tuned to capture the unique temporal
patterns inherent in time-series data. This process equips
LLMs with the ability to effectively prediction in domains
where data scarcity or specificity presents challenges to
conventional deep learning models. In the pursuit of effi-
ciency and practicality, most recent works have shifted to-
wards parameter-efficient fine-tuning methods like Low-Rank
Adaptation (LORA) [207] and Layer Normalization Tuning
(LNT) [208]. In particular, LORA adapts pre-trained models
to new tasks by modifying the weight matrices of the model’s
layers. Given a weight matrix W ∈ Rd×m in a pre-trained
model, LORA fine-tuning introduces two low-rank matrices
A ∈ Rd×r and B ∈ Rr×m, where r is the rank and
r ≪ min(d,m). The weight matrix W is updated as:

W ′ = W +∆W, where ∆W = AB. (2)

The matrices A and B are the parameters learned during fine-
tuning while the original weights W are kept frozen. This
results in a model that is fine-tuned for the task at hand with
only a small increase in the number of parameters. Many
works of fine-tuning LLMs proposed applying the technique
to the query (Q) and value (V) matrices in attention layers,
showing notable results without extending it to all parameters
within the attention or feed-forward layers. In the context
of time-series prediction, however, this selective fine-tuning
may require adjustment. As shown in Fig. 20, LLM4TS [205]
applies LORA fine-tuning to the query (Q) and key (K),
achieving state-of-the-art performance. It augments the pre-
trained model with additional trainable components and thus
incorporates changes to the model’s weights, unlike the soft
prompting to modify the inputs. Using LORA allows for
retaining the general capabilities of the LLM while imbuing it
with domain-specific knowledge, ensuring that the time-series
prediction model is both specialized and robust.

On the other hand, LNT offers a focused approach to adapt
pre-existing parameters in transformer blocks to specific tasks.
LNT specifically targets the affine transformation parameters
within the layer normalization components of a transformer
model. These parameters, such as scale and shift, originally
set to ensure standardized input distribution across network
layers, become trainable to allow the model to retain its learned
representations while fine-tuning the time-series prediction. As
shown in Fig. 20, LLM4TS [205] employs both LNT and
LORA fine-tuning for the query and key. A similar strategy
can be found in [206], which freezes all attention and feed-
forward layers, and only fully fine-tunes the embedding layers
and applies the LNT. Incorporating LNT in the fine-tuning
process, in the context of adapting pre-trained LLMs for time-
series prediction, provides a mechanism for the model to adjust
its internal normalization to better fit the dynamics and scale
of the time-series data.

These parameter-efficient fine-tuning methods, such as
LoRA and LNT, are crucial for the practical deployment of
LLMs in telecom. Lin et al. claims that applying LoRA to
GPT-3 can reduce the number of trainable parameters from
175.2 billion to 37.7 million [16], and combining LoRA with
federated split learning can significantly reduce computing and
communication latency at the mobile edge.
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Fig. 20. The model framework of LLM4TS framework [205]. Q, K, V are
the query, key, value vectors respectively. Wq , Wk , Wv are the matrices used
for generating query, key and value vector.

E. Multi-modal LLM for Telecom Prediction

Multi-modal learning is a promising feature of LLM tech-
niques, aiming to process related information from multiple
modalities, such as text, audio, image, video, 3D maps, graphs,
etc [209]. A multi-modal LLM can use diverse encoders to
extract features from different modalities into desired outputs,
indicating a more comprehensive and flexible approach to
process information. Such multi-modal capabilities can be
particularly useful for integrating sensing and communication,
which is a crucial technique in 6G networks. In particular, as
shown in Fig. 21, LLMs can include multiple inputs with di-
verse modalities, e.g., the image captured by satellite or street
cameras, 3D LiDAR maps and videos collected by vehicles.
Sensing has become a critical part of envisioned 6G networks,
and multi-modal LLMs are capable of making the most of
the collected sensing information. On the other hand, LLMs
can also include conventional tabular-based numerical input,
and further consider textual input and prompt instructions.
With multi-modal inputs, LLM agents can better understand
the surrounding environment and then make more accurate
predictions for network dynamics.

1) Channel state information (CSI) prediction: CSI
plays an increasingly vital role in wireless networks, enabling
the transmitter to adjust the transmission parameters based
on current channel conditions and, therefore, achieve better
performance. Prediction-based methods are appealing methods
to obtain instantaneous CSI. For instance, Jiang et al. [210]
applied deep learning for CSI prediction using generated or

historical data. Most existing studies consider single modality
input, which usually consists of tabular-based numerical data
such as historical CSI. However, the real-world environment
can be more complicated, and CSI may be affected by many
other factors such as weather conditions and dense buildings
[5], [211]. These multi-modal inputs, such as weather maps
and building distributions, can provide a more comprehensive
understanding of the signal transmission environment, but
jointly processing these inputs is beyond the capabilities
of existing techniques. Multi-modal LLMs offer promising
solutions by jointly considering diverse modalities and data
sources, producing more accurate CSI prediction results. In
addition, users can provide textual prompt instructions, which
are easy-accessible and user-friendly for non-researcher users.

2) Prediction-based mmWave/THz beamforming: The in-
creasing traffic demand and limited bandwidth resources make
mmWave and THz communications promising techniques.
However, these high-frequency transmissions are highly di-
rectional and vulnerable to signal blockages. Consequently,
efficient beamforming and alignment are required to achieve
reliable mmWave and THz networks. For instance, Ke et
al. [212] applied a Gaussian process-based ML scheme for
UAV position prediction and UAV-mmWave beam-tracking,
and Shah et al. [213] deployed LSTM networks to predict
multiple mmWave beams from multiple cells. These predic-
tions usually consider numerical input, especially historical
data [212]. Charan et al. [25] introduced computer vision-
aided techniques for signal blockage prediction, using cameras
on BSs to capture possible blockages and then initiate user
hand-off beforehand. However, it is still limited to a single
image modality with limited environmental information. By
contrast, multi-modal LLMs can take holographic input from
the environment, and jointly consider historical tracks, instant
images, and text instructions, etc. These comprehensive inputs
can produce more accurate and reliable prediction results,
contributing to efficient mmWave and THz beamforming.

3) Traffic load prediction: Accurate traffic load prediction
is the prerequisite of efficient network management, which
is related to user numbers, service types, time periods, and
so on. Similar to CSI prediction, most existing studies take
numerical datasets as single modal input [214], [215]. For
instance, Alekseeva et al. [214] compared the performance
of seven ML algorithms (including Bagging, Random Forest,
Gradient Boosting, Linear Regression, Bayesian Regression,
Huber Regression, and SVM Regression) on the task of traffic
load prediction. Their findings indicate that Boosting-based
methods demonstrate superior performance when handling
large volumes of load data, yet incurring significant training
costs. Hu et al. [215] integrated a sequence of AutoEncoders
to extract multiple sets of latent temporal features from
historical load data for load prediction, which ensures that
extracted feature sets are representative of the entire load data.
Most existing studies mainly consider two factors: the spatial
correlation between nearby BSs and the temporal dynamics
captured in historical data. However, Abdullah et al. [216]
suggested that various meteorological factors, such as rain,
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Fig. 21. Multi-modality LLM for prediction problems in wireless networks.

wind, and temperature, can also significantly influence the
volume of traffic loads. Consequently, multi-modal LLMs may
be used to harness diverse information streams, including
spatial BS corrections, temporal historical traffic loads, and
environmental factors, facilitating accurate load prediction and
providing effective network management and service delivery.

4) Quality of Experience (QoE) prediction: QoE is a
measure of the customer’s experiences of specific services,
which is a useful metric in diverse mobile scenarios, such
as mobile edge computing [150], edge caching [217], and
resource allocation [218]. QoE is closely related to the user’s
natural language comments. An example is given by [150]: “I
am having the same issues as everyone else...Phone shows 5
bars on 4G.” Makes calls and texts just fine but no imessage
or internet (safari as well as any other apps that require
connectivity). Right now the two things I have noticed are
that I’m more likely to have it work late at night (11pm-
2am) and more likely to have it work when I’m outdoors...”
Most existing studies predict QoE by extracting the key
attributes of users, devices, applications, and networks for
modeling and measuring. However, this comment indicates a
specific network issue ”no imessage or internet at midnight”.
Extracting such an informative and specific user experience
to several attributes could lead to considerable information
loss, and therefore the service provider cannot fully understand
the user’s demand. With multi-modal LLMs, user’s textual
comments and network numerical metrics can be jointly eval-
uated, providing a comprehensive evaluation of the network
performance and user experiences. In addition, multi-modal
LLMs can also be used to generate and predict user experience
using LLM’s comprehension and reasoning capabilities.

F. Discussions and Analyses
Table XI summarized the LLM-enabled prediction tech-

niques in terms of main features, input and fine-tuning re-
quirements, advantages, and telecom prediction application
opportunities. We summarize the key findings as follows.

Firstly, large-scale time-series datasets are important for
building Time-LLM for telecom. Previous sections have
demonstrated LLM’s potential for solving time-series predic-
tion problems. However, it is worth noting that time-series

datasets are prerequisites of pre-training Time-LLM, and then
the LLM can understand and capture the hidden patterns of
the input data. Despite the importance, collecting such datasets
can be difficult in telecom due to various data formats and
sources, different network operators, customer privacy, etc.

Secondly, prompting and preprocessing-based methods are
the most efficient approaches to using LLM for prediction
tasks. Compared with pre-training and fine-tuning, the dis-
cussions in Section VII-C demonstrate that prompting is one
of the most straightforward methods of using an LLM for
prediction tasks. Such an advantage can still be explained by
LLM’s impressive zero-shot learning capabilities. In addition,
preprocessing input data is another simple method. Trans-
forming numerical values into textual strings can make the
most of LLM’s capabilities in processing standard language
tasks. These two methods are particularly useful for short-term
prediction problems in telecom with instant responses.

In addition, previous sections also show that parameter-
efficient fine-tuning methods are critical for LLM deployment
in telecom. Section VII-D introduced two parameter-efficient
methods, LoRA and LNT, to fine-tune LLM for prediction
tasks. Efficient fine-tuning methods can improve overall com-
puting efficiency, lowering the demand for computational re-
sources. These features are very useful for processing various
tasks ranging from generation and classification to prediction
problems in the telecom field such as in Section VII-D, espe-
cially considering limited computational and storage resources
at the network edge.

Finally, multi-modal LLM has great potential for telecom
applications. Incorporating multi-modality LLM into telecom
has been discussed in multiple existing studies [30], and
Section VII-E investigates the potential for telecom prediction
problems such as CSI prediction, prediction-based beamform-
ing, and QoE prediction. The key motivation is that multi-
modal information from multiple sources can contribute to
prediction accuracy, and such enhancement can further im-
prove the network operator’s decision-making.
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TABLE XI
SUMMARY OF LLM-BASED PREDICTION FOR TELECOM.

LLM-based
prediction
techniques

Main features
Input and fine-tunning

requirements
Advantages compared with

conventional approaches
Telecom prediction application

opportunities

Pre-training
foundation

models

Leverages pre-trained models
on diverse time series datasets

to capture general temporal
patterns. It means training

LLMs from scratch
specifically for prediction

purposes.

Requires a large corpus of
time-series data for initial
pre-training, but collecting

these datasets may be difficult
in telecom; fine-tuning may be

needed for specific telecom
tasks.

The model has zero-shot
prediction capabilities, and

quickly adapts to new
tasks with minimal

fine-tuning; captures a
wide range of temporal

dynamics.

A prediction foundation model for
telecom can handle various short-term or
long-term prediction tasks, such as traffic

load prediction, CSI prediction, user
number estimation, and so on.

Frozen
pre-trained

LLM
for prediction

Using pre-trained LLMs
without fine-tuning their

parameters, including
prompting-based and

preprocessing-based methods.

Tokenization and embedding
of time series data; For

prompt-based methods, the
prompt format must be
carefully designed; No
fine-tuning for LLMs is

required.

Low computational cost
and design complexity;

Leveraging the
generalization capabilities

of a pre-trained LLM
directly.

This technique is particularly useful for
short-term prediction, such as short-term

traffic load and network performance
prediction. The low computational cost
can also adapt to network edge, even

mobile applications.

Fine-tuned
LLM

prediction

Adapts a pre-trained LLM to
telecom-specific prediction
tasks through fine-tuning

techniques such as LoRA and
LNT.

It requires time series data for
fine-tuning; may require

parameter-efficient fine-tuning
like LoRA and LNT to
improve the efficiency.

Fine-tuning can
incorporate telecom

domain knowledge into
LLMs, improving the

accuracy and specificity of
telecom tasks.

Fine-tuning LLMs can better adapt to
specific tasks in telecom, e.g., collecting
specific datasets to fine-tune an LLM for
user localization. It is more flexible than

pre-trained models from scratch, and
more reliable than pure prompting-based

methods.

Multi-modality
prediction

Using LLMs to jointly
consider multi-modal

environment information, e.g.,
tabular data, text, and image,

aiming to provide more
accurate prediction results.

It requires multi-modal input
and proper prompt to predict
desired output; LLMs can be

specifically
pre-trained/fine-tuned to

further improve the
performance and

generalization capabilities.

Multi-modal can take
advantage of inputs with
various modalities. With

these comprehensive
inputs, LLMs can better

predict the network
dynamics than existing

methods.

Sensing is an important part of 6G
networks, and multi-modal sensing can
provide more comprehensive input for

LLMs, producing more accurate
prediction results by jointly considering
various inputs, e.g., more accurate traffic

load prediction and beam steering.

VIII. CHALLENGES AND FUTURE DIRECTIONS OF
LLM-EMPOWERED TELECOM

This section will introduce the challenges of realizing LLM-
empowered telecom, including telecom-domain LLM training,
practical LLM deployment in telecom, and prompt engineering
for telecom applications. Then, we identify several future di-
rections, e.g., LLM-enabled planning, model compression and
fast inference, overcoming hallucination problems, retrieval
augmented-LLM, and economic and affordable LLMs.

A. Challenges of Applying LLM Techniques to Telecom

1) Telecom-domain LLM training: Previous sections
have shown the importance of building telecom-specific
LLMs, e.g., telecom-domain question answering [115], tele-
com troubleshooting [23], and standard specification classi-
fication [13]. Despite the great potential, training an LLM
specifically for telecom presents unique challenges due to the
complex nature of telecom networks. In the following, we will
analyze this challenge in detail.

Sufficient telecom-related datasets are prerequisites for
training a telecom LLM. Unlike general-domain LLMs, which
can leverage large-scale text corpora on the internet, obtain-
ing a sizable dataset exclusively focused on communication
networks can be challenging. Existing studies usually focus
on one specific task and then build the corresponding dataset,
e.g., the trouble report dataset [23], 3GPP specification dataset

[13], and telecom question answering dataset [115]. However,
these datasets are usually small-scale and task-specific, and
a comprehensive large-scale dataset should include network-
related documents, standard specifications, protocols, text-
books, research papers, and other relevant sources. Maatouk
et al. started the exploration in [125] by building a dataset
with 10000 telecom-related questions and answers, including
around 25000 pages and 6 million words. More efforts are
needed to provide more comprehensive and diverse datasets
for telecom LLM training.

Meanwhile, it is worth noting that telecom networks involve
a large number of various concepts such as network protocols,
routing algorithms, network topologies, network security, etc.
Therefore, teaching an LLM to comprehend and reason about
these complex concepts requires a robust training strategy.
An effective approach is to pre-train the LLM on a large-
scale general language corpus and then fine-tune it on specific
communication network datasets, e.g., datasets for the BS
services, historical datasets for prediction, or datasets for edge
computing-related tasks. In addition, balancing model size and
performance is crucial. LLMs trained on large-scale datasets
tend to be computationally expensive and memory-intensive.
Appropriate model size can reduce the burden on energy
and computation resources during pre-training and fine-tuning
phases. In addition, balancing model size and performance
is crucial to ensure practical usability, especially considering
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TABLE XII
SUMMARY OF TELECOM DATASETS FOR LLM

Dataset Task Document size Question size Open-source
5GSum [219] Summarization 713 articles N/A Yes

Tspec-LLM [220] Summarization 30,137 documents 100 questions Yes
TeleQnA [125] Question answering N/A 10,000 questions Yes
NetEval [221] Question answering N/A 5,732 questions Yes

TeleQuAD [115] Question answering N/A 2,021 questions No
StandardsQA [222] Question answering N/A 2,400 questions No

ORAN-Bench-13K [223] Question answering 116 documents 13,952 questions Yes
5GSC [219] Sentence classification 2,401 sentences N/A Yes

scenarios with limited computational capacity such as vehicles
and mobile phones. Therefore, techniques like model compres-
sion, knowledge distillation, or utilizing specialized hardware
accelerators can be explored to reduce the model’s size and
enhance its efficiency without compromising its understanding
of communication networks.

The above analyses show that obtaining domain-specific
datasets is one of the main bottlenecks of training telecom
LLMs. Several datasets have been released recently to address
this challenge. As shown in Table XII, there exist different
types of datasets, focusing on tasks including text summariza-
tion, question answering, and sentence classification. Those
datasets are mainly extracted from telecom-related documents.
By integrating these datasets, LLMs can be trained to un-
derstand and respond to customer queries more effectively,
predict and mitigate network issues, and identify fraudulent
activities with higher accuracy, ultimately leading to improved
operational efficiency and customer satisfaction in the telecom
sector.

2) Practical LLM deployment in telecom : To leverage
the benefits of LLM techniques, the models should be properly
deployed in telecom networks. Specifically, LLMs can be
deployed at different levels, including central cloud, network
edge, or user devices. We have introduced the features of each
approach in Section III-F. However, the related studies are
still in very early stages, and the proposed schemes mainly
focus on system-level design and definitions. The following
will discuss the key challenges and difficulties for practical
LLM deployment in telecom networks.

Firstly, many real-world wireless applications have stringent
requirements for service delay, e.g., autonomous driving and
robotic control. With such time constraints, using a central
cloud-based LLM to process these latency-critical tasks can
be inappropriate, since the task uploading and solution down-
loading may increase the service delay. Additionally, if the
task involves image and video processing, the uploading and
downloading process will significantly increase the latency,
especially considering the limited backhaul capacity. For in-
stance, the image classification tasks introduced in Section
V-D require rapid responses for signal blockage prediction and
autonomous driving [25] [161], and processing these require-
ments on cloud can be impractical due to high service latency.
In addition, the LLM inference time will also contribute to sys-

tem latency, ranging from 0.58 to 90 seconds. Therefore, the
service time should be very carefully evaluated before using a
LLM for latency-critical applications. Network edge provides
an efficient approach for computational task processing, and
edge intelligence has become an appealing direction to deploy
ML algorithms in telecom networks. However, network edge
servers have limited computational or storage capacity, and
LLMs are usually computationally intensive with large model
sizes, which may prevent edge-LLM deployment.

To this end, hybrid deployment can be an ideal solution by
combining central cloud, edge, and user device deployments,
providing a balance between scalability, low latency, and
privacy. Deploying LLMs at different levels, including the
central cloud, network edge, or user devices, offers unique
opportunities and challenges in telecom applications. For ex-
ample, large-scale LLMs such as GPT-4 and LLama3-70b are
deployed at the central cloud to handle tasks with high-quality
requirements on the generated content. Meanwhile, small-
scale LLMs are implemented at the network edge or even on
user devices for latency-sensitive tasks. However, coordinating
LLMs at different levels can be challenging and requires
dedicated designs. For example, how to select appropriate
LLMs for diverse user tasks such as lower latency and price,
higher generation quality, or multi-modal tasks.

3) Prompt engineering for telecom applications : Prompt
engineering is a crucial aspect of utilizing LLM techniques
effectively, as it plays a significant role in guiding the model’s
behaviour and generating desired outputs. Specifically, prompt
engineering refers to the process of structuring an instruction
that can be interpreted and understood by generative AI
models, and then produce the desired output. For instance,
few-shot learning can be considered one of the prompt engi-
neering approaches, in which LLMs can learn from examples
and demonstrations to improve their performance on target
tasks. Compared with pre-training or fine-tuning an LLM,
prompting has a much lower cost on computational resources.
In particular, it relies on LLM’s inference capabilities, indi-
cating the most straightforward and efficient approach to use
LLMs. The high efficiency of prompting techniques aligns
well with many telecom applications, which usually require
fast responses to network dynamics, e.g., changing channel
conditions, user numbers, network traffic level, etc. However,
designing prompts for telecom applications presents unique

44



challenges due to the domain complexity.
Firstly, telecom networks encompass a wide range of con-

cepts, protocols, and technologies, making it challenging to
distill the necessary information into a concise prompt. The
diverse nature of the domain requires a deep understanding
of networking principles and the ability to capture specific
nuances related to network architectures, protocols, perfor-
mance optimization, and security. To design effective prompts,
researchers must identify the most relevant components and
provide concise yet comprehensive instructions to LLMs.
Meanwhile, prompt designs should strike a balance between
being specific enough to guide the LLM in generating accurate
and contextually appropriate responses, while also remaining
general enough to handle a wide range of network-related
queries or tasks. Achieving this balance is crucial as overly
specific prompts may limit the model’s ability to generalize,
while a general prompt may lead to irrelevant responses.

Moreover, telecom tasks often require the LLM to consider
contextual information and situational variables. For example,
network troubleshooting may involve analyzing network logs,
diagnosing performance issues, or identifying security vulnera-
bilities. Designing prompts that take into account the relevant
context and guide the model to consider appropriate factors
can significantly enhance the accuracy and relevance of the
generated responses. Techniques like providing explicit con-
text cues or utilizing conditional generation can be explored.

To summarize, prompt design of LLMs for telecom appli-
cations poses a significant challenge due to the intricate and
constantly evolving nature of the domain. Crafting effective
prompts necessitates a profound comprehension of networking
principles, the capacity to strike a balance between specificity
and generality, and an awareness of contextual factors. To this
end, a practical solution is to publicize some standard prompt-
ing templates. They will provide fundamental suggestions for
prompt designs of each kind of task. For instance, network
optimization-related tasks should specify the optimization ob-
jective and control variables, providing feedback or examples
for previous selections. In addition, researchers and industry
experts play a crucial role in developing these standards,
since the template design requires professional knowledge and
understanding of telecom networks. Then these templates will
be able to deliver precise, pertinent, and impartial responses
in telecom applications.

B. Future Directions

1) Multi-modal LLMs for telecom: Multi-modality is a
crucial direction for LLM development, indicating seamless
integration of information with various modalities such as text,
image, audio, video, etc. Such a capability may serve many
applications in future telecom networks. For instance, sensing
has become a critical pillar for envisioned 6G networks, and
multi-modal LLMs can utilize 3D multi-modal data, e.g.,
text, satellite or street camera images, 3D LiDAR maps and
videos, to provide a holographic understanding for wireless
signal transmission environment [30]. A specific example of
mmWave/THz beamforming has been discussed in Section

VII-E, and it aims to predict signal transmission blockage by
using multi-modal input such as image and video. Meanwhile,
with multi-modal information of the 3D environment, we can
also have better CSI estimation results, which is critical for
signal transmission and network management [30]. In addition,
Xu et. al also introduced an example in [17], which utilizes
LLMs to generate a traffic accident report by using videos
collected by vehicles. This video-to-text generation can also
be used to analyze the videos collected by UAVs to describe
the wireless signal transmission environments.

2) LLM-enabled planning in telecom: Multi-step plan-
ning and scheduling are critical for handling many tasks
in the telecom field. For instance, Section IV-C2 has intro-
duced an example of coding wireless projects with step-by-
step prompting. Meanwhile, many optimization problems with
multiple network elements and control variables have to be
solved by dedicated planning [7]. However, recent benchmarks
have shown that LLMs struggle with tasks requiring complex
planning and sequential decision-making, which may prevent
the direct application to many telecom tasks. Some existing
studies such as [14] and [18] propose to improve the multi-step
planning capabilities by step-by-step and CoT prompting. De-
spite the satisfactory performance in [14] and [18], they require
dedicated analyses to manually decompose a complicated
task into multiple sub-tasks. Therefore, future studies should
aim at developing better algorithms for planning that can be
integrated into LLMs, and such multi-step planning capability
is crucial for solving telecom-domain tasks. This might involve
incorporating structured reasoning and problem-solving frame-
works into the models, enabling them to break down tasks into
smaller and more manageable sub-tasks. Therefore, automated
task decomposition can be an attractive solution to improve
the planning performance of LLMs. However, automatically
decoupling one complicated task into multiple sub-tasks is still
very challenging in the telecom field. Additionally, another
solution could be integrating simulation environments directly
within the training process, allowing models to practice and
refine their planning skills in a controlled setting before
applying them to real-world tasks. It allows the LLMs to
improve the planning performance by trial-and-error before
applying it to telecom tasks.

3) LLM for resource allocation and network optimiza-
tion: Resource management is a fundamental and crucial
problem for network operation, e.g., transmission power and
bandwidth resources allocation. The above Section VI intro-
duced various LLM-enabled optimization techniques for tele-
com applications, including LLM-aided reinforcement learn-
ing, black-box optimizer, LLM-aided convex optimization and
heuristic algorithm design. These analyses of existing studies
have revealed the potential of using LLM to optimize network
performance. For instance, verbal reinforcement learning can
take the network operator’s human language instructions as
input to improve task performance, and LLMs can design
novel heuristic algorithms based on specific task demands
for network resource allocations. LLM-based optimization has
two crucial advantages: Firstly, LLM can integrate human lan-
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guages into the optimization procedure, which makes network
management more accessible with much lower complexity;
Secondly, LLM can provide reasons and explanations for
their decisions, and this capability is crucial for understanding
complicated systems such as telecom networks. Despite the
advantages, it is worth noting that some network optimization
problems can be extremely complicated with coupled control
variables and correlated network elements. Solving these op-
timization tasks may require dedicated design and multi-step
scheduling, which is still a challenge in the LLM field.

4) LLM-enhanced machine learning for telecom: ML
algorithms have been widely applied to wireless networks and
achieve satisfactory performance. For example, reinforcement
learning is one of the most widely used ML techniques for
network optimization, and deep neural networks have been
extensively explored to predict CSI. Section VI-B introduced
LLM-enhanced reinforcement learning by automating the re-
ward function design, indicating a promising direction to
explore LLM-enhanced ML algorithms. For instance, Sahu et
al. investigated LLM-aided semi-supervised learning for the
task of extractive text summarization, in which they proposed
a prompt-based pseudo-labelling strategy with LLMs [224].
Multi-agent learning also has many crucial applications in
wireless networks, and existing studies show that LLM-based
multi-agents have many promising features [225]. In summary,
LLM brings new opportunities to make conventional ML
algorithms more accessible and explainable when applied to
telecom networks.

5) Real-world implementations of LLM for telecom in-
dustry: The study in [106] by Apple introduced a method for
efficiently running LLMs on devices with limited DRAM ca-
pacity. This advancement is particularly beneficial for telecom-
specific applications that rely on on-device LLM. By bringing
LLM capabilities onto the device, Qualcomm also integrates
on-device AI into smartphones to provide faster and more
personalized services without relying on cloud-based solutions
[107]. Qualcomm aims to improve user privacy and reduce
latency, enabling applications such as real-time language
translation, advanced camera features, and direct contextual
assistance on the user’s device. On-device AI also allows
for continuous operation without internet dependency, which
is crucial for maintaining service quality in areas with poor
connectivity. Additionally, solutions such as Kinetica’s SQL-
GPT enable telecom professionals to interact with data using
natural language queries, converting these queries into SQL for
quick and effective analysis [226]. This approach democratizes
access to data insights, empowering employees to make faster
and more informed decisions. These applications demonstrate
the transformative potential of LLMs in the telecom industry,
enhancing security, operational efficiency, and customer expe-
rience. By continuing to innovate with LLMs, telecom com-
panies can stay ahead in an increasingly AI-driven landscape,
providing superior services and maintaining a competitive
advantage.

6) Model compression and fast inference for network
edge and mobile applications: The model size is one of

the key bottlenecks of applying LLMs to the telecom do-
main, leading to stringent requirements for computational and
storage capacities. Therefore, compressing the model size to
adapt to network edge and mobile applications becomes a
promising direction. In addition, it will also contribute to
the fast inference of LLMs, since many wireless applications
require rapid response time and low latency. For instance,
Xu et al. proposed an on-device inference model specifically
designed for efficient generative natural language processing
tasks [112], achieving a 9.3× faster generation speed. Such
a technique can be very promising for LLM-enabled mobile
applications in telecom, enabling faster response time for user
inquiries. Meanwhile, it is worth noting that compressing the
model size may degrade the LLM performance, and how
to balance the model size and performance requires more
research efforts. It calls for novel model compression and
pruning techniques to reduce the storage and computation bur-
dens at the network edge; on the other hand, standard metrics
must be defined to evaluate the performance of LLMs in the
telecom domain, e.g., accuracy and hallucination probability
as we introduced in previous Section III-E.

7) Overcoming hallucination problems in telecom ap-
plications: Hallucination, or the generation of factually in-
correct or nonsensical information, remains a significant issue
for LLM applications. Specifically, it means that the LLM
may generate some nonsensical answers or solutions for the
given telecom task. Hallucination can severely undermine the
reliability and credibility of LLM-generated content, degrading
the performance on many downstream tasks. For instance,
a nonsensical answer may be generated when using LLM
for telecom question answering. Overcoming these issues is
critical for telecom applications to guarantee network service
quality and reliability. To this end, future research should
focus on developing methods to reduce hallucination and
improve the factual accuracy of model outputs. This could
include enhancing the training datasets with more verified
and reliable sources, implementing post-generation verification
steps, or incorporating cross-referencing mechanisms within
the model. Additionally, exploring the use of external knowl-
edge bases and real-time fact-checking during the generation
process could help mitigate this issue. Recently, it has been
demonstrated that under specific evaluation conditions, LLMs
exhibit exceptional zero-shot capabilities in assessing factual
consistency [227]. This underscores their potential to become
leading evaluators of hallucination in various contexts. More-
over, techniques such as adversarial testing can also help in
assessing their susceptibility to hallucination, where models
are deliberately presented with complex or misleading inputs.

8) Retrieval augmented-LLM for telecom: Retrieval aug-
mentation is an important direction for LLM development,
which retrieves facts from an external knowledge base to
ground LLMs on the most up-to-date information. Telecom
networks are constantly evolving and updating, and retrieval
augmentation has great potential for telecom applications. In
particular, retrieval-augmented LLM can improve the quality
and relevance of the generated responses since the LLM has
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access to more accurate and relevant information. However,
current retrieval-augmented generation models increase the
context length, which in turn decreases the efficiency of
the model due to the added computational cost, which may
lead to severe slow-response issues. Such slow response may
increase the overall network latency and degrade the service
quality. It may prevent the application of some scenarios
with tight delay budget, which is very common in wireless
networks. Therefore, future research could focus on improving
the efficiency of retrieval-augmented generation by optimizing
retrieval mechanisms to balance context relevance and length.
This could involve developing more advanced indexing and
search algorithms that require less memory. Additionally, dy-
namically adjusting the amount of retrieved information based
on the query’s complexity could help maintain or improve
efficiency without sacrificing the quality of the output.

9) Economic and affordable LLMs: Despite the great
potential and advantages, training an LLM can be financially
expensive. For instance, the training expenses for GPT-4
exceeded $ 100 million, and the LLaMa2 70B model was
trained on 2048 GPUs A100 for 23 days with $ 1.7 million
estimated cost [228]. Although training some smaller models
such as LLaMa2 7B can be much cheaper, the affordability of
LLM techniques is still one of the main concerns. For instance,
the study in [229] shows that using GPT-4 to support customer
service can cost more than $ 21,000 per month for a small
business. Meanwhile, there are many LLM APIs with various
prices, including the prompt cost proportional to the prompt
length, generation cost related to the generation length, and
a possible fixed cost per query. For example, it costs $30 for
10M tokens using OpenAI’s GPT-4, while only $ 0.2 for GPT-
J hosted by Textsyth [230]. The financing cost of training,
fine-tuning, and deploying LLMs will significantly affect the
application in telecom networks. However, advancements like
OpenAI’s GPT-4o mini, a cost-efficient small model, offer
promising solutions. Priced at just $ 0.15 per million input
tokens and $ 0.60 per million output tokens, GPT-4o mini
is more affordable than previous frontier models and over
60% cheaper than GPT-3.5 Turbo. This affordability, combined
with its superior performance in reasoning tasks, mathematical
reasoning, and coding proficiency, enables a broad range of
cost-effective applications. Similarly, Llama3-8b is also an
affordable small-scale model with fast inference speed. These
small-scale models may alleviate the economic cost of LLMs
with fewer parameters, lower training and fine-tuning costs,
and faster inference time. For instance, telecom companies
can use GPT-4o mini for customer support chatbots that handle
vast conversation histories or for network management systems
that analyze extensive performance metrics in real time. Given
the heterogeneous prices and service quality, it is of great
importance to evaluate the financing cost of deploying LLMs
in telecom networks, e.g., balancing the possible performance
improvement and the LLM deployment cost, and using LLMs
in an economic manner for telecom applications. However,
this direction has limited existing studies, and it still requires
more research efforts.

IX. CONCLUSION

Recently, large language models (LLMs) have shown great
promise in many fields, specifically for language-related tasks
such as summarization and question and answering. LLM-
based solutions have also been primarily investigated in the
telecom field. In this work, we aim to present a comprehensive
survey on LLMs for Telecom. In particular, we first introduced
the LLM fundamentals. We present a comprehensive overview
of the model architecture, pre-training, fine-tuning, inference
and utilization, evaluation, and deployment of LLM-based
solutions. Then, a comprehensive survey of existing works
on the key techniques and applications in terms of genera-
tion, classification, optimization, and prediction problems is
presented. These investigations and analyses have proven that
LLMs have outstanding potential to bring artificial general
intelligence to the telecom field using in-context and zero-
shot learning capabilities. Finally, we discussed the key chal-
lenges, such as data sets and cost, as well as future research
opportunities of LLM-empowered telecom. We hope this work
can serve as a good reference for researchers and engineers
to better understand the existing works, potentials, challenges,
and opportunities of applying LLMs for the telecom field.
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