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ABSTRACT
Large language models (LLMs) have demonstrated great success
in various fields, benefiting from their huge amount of parameters
that store knowledge. However, LLMs still suffer from several key
issues, such as hallucination problems, knowledge update issues,
and lacking domain-specific expertise. The appearance of retrieval-
augmented generation (RAG), which leverages an external knowl-
edge database to augment LLMs, makes up those drawbacks of
LLMs. This paper reviews all significant techniques of RAG, espe-
cially in the retriever and the retrieval fusions. Besides, tutorial
codes are provided for implementing the representative techniques
in RAG. This paper further discusses the RAG update, including
RAG with/without knowledge update. Then, we introduce RAG
evaluation and benchmarking, as well as the application of RAG in
representative NLP tasks and industrial scenarios. Finally, this pa-
per discusses RAG’s future directions and challenges for promoting
this field’s development.

Reference Format:
Shangyu Wu, Ying Xiong*, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan,
Lianming Huang, Xue Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue.
Retrieval-Augmented Generation for Natural Language Processing: A Sur-
vey.

1 INTRODUCTION
Large languagemodels (LLMs) [77, 117, 123, 153, 182] have achieved
significant advancements in recent years and have become the
cornerstone of various applications in the field of natural language
processing (NLP). These LLMs are typically pre-trained on a large
amount of natural language corpus and then fine-tuned on the
specific downstream tasks’ datasets. Recent works [4, 57, 115, 127]
demonstrate the success of LLMs can be explained by the fact that
LLMs act as knowledge bases, which refers to implicitly storing
the learned knowledge in the parameters as internal memory and
generating responses by retrieving answers from memory. To store
more knowledge for better generation performance, existing works
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generally enlarge the memory capacity by increasing the volume
of parameters [1, 12, 58, 85].

Although existing LLMs have shown great power, several chal-
lenges still hinder the development of LLMs. One of the most promi-
nent challenges is the hallucination problem [25, 75, 76], which
refers to the tendency of LLMs to generate responses that are co-
herent and fluent but factually incorrect. Another big challenge
is the knowledge update issue. To update the knowledge stored
in the LLMs’ internal memory [115, 162, 186], it is necessary to
retrain/fine-tune LLMs with new data, which is a costly process.
Another challenge for general LLMs is lacking domain-specific ex-
pertise [22, 148, 149, 184]. Training a domain-specific LLM demands
considerable manpower for dataset collection.

To address these challenges, recent works [11, 53, 95] have pro-
posed leveraging an external knowledge database to augment LLMs,
known as Retrieval-Augmented Generation (RAG). By supplying
LLMs with retrieved relevant factual information, the hallucination
problem can be alleviated to some extent. Besides, the knowledge
update issue can also be addressed by updating the external knowl-
edge database, which can augment LLMs with up-to-date knowl-
edge. RAG can also convert a general LLM into a domain-specific
LLM by constructing and utilizing a domain-specific knowledge
database. Therefore, RAG plays an important role in augmenting the
functionality of LLMs, making them more accurate, knowledgeable,
and reliable in a wide range of applications.

Contributions: This paper reviews all techniques involved in
RAG for natural language processing. Although there are several
survey papers for RAG [44, 63, 96, 180, 189], our survey still has
some key insights,

(1) This paper systematically introduces each component of
RAG, including details about the retriever from building
to querying and techniques of the retrieval fusions with
tutorial codes.

(2) This paper exhibits different RAG training strategies, in-
cluding RAG with/without datastore update.

(3) This paper further discusses RAG evaluation and bench-
marking, as well as the applications of RAG on downstream
NLP tasks and practical NLP scenarios.
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Figure 1: The overview of retrieval-augmented generation for natural language processing. The inputs as queries are fed into
both the retriever for retrieval knowledge and the generator for outputs. There are three kinds of retrieval fusions, including
query-based fusion, logits-based fusion, and latent fusion.

(4) This paper finally identifies promising future directions for
exploring and the main challenges for addressing.

The remainder of this paper is organized as follows. Section 2
gives an overview of RAG. Section 3 and Section 4 comprehensively
introduce all technical details used in retrievers and retrieval fu-
sions. Section 6 presents how to train the RAG with/without new
knowledge. Section 8 presents the techniques used in representative
NLP tasks. Section 9 shows the applications of RAG in practical
NLP scenarios. Section 10 discusses the future directions of RAG.
Section 11 makes a final conclusion of this paper.

2 OVERVIEW OF RETRIEVAL-AUGMENTED
GENERATION

This section gives an overview of Retrieval-Augmented Generation
(RAG) for NLP. An RAG system utilizes the external knowledge base
𝑫 to enhance the generation system. Taking external documents
as an example, 𝑫 consists of external documents, each of which
contains a set of chunks 𝑐𝑖 ∈ 𝑪𝒊 . These chunks are transformed
into vector embedding using an embedding model. When inputting
a query 𝑞, which is embedded as a vector, then the retriever in
the RAG system retrieves top-𝑘 chunks 𝑅𝑞 = {𝑟1, 𝑟2, . . . , 𝑟𝑘 } most
relevant to the query 𝑞. The RAG system can use different fusion
methods to fuse the retrieved chunks, which is discussed in Section

4. The overall process is formulated as follows:

Retriever(𝑞, 𝐷) → 𝑅𝑞 (1)

Generator(Retrieval Fusion(𝑞, 𝑅𝑞)) → 𝑎𝑛𝑠𝑤𝑒𝑟 (2)

As shown in Figure 1, RAG typically consists of three modules, the
retriever, the generator, and retrieval fusions.

Retriever module usually comprises three components: an en-
coder for encoding inputs into embeddings, an efficient indexing
that supports approximate nearest neighbor search, and a datas-
tore for storing external knowledge in the form of key-value pairs.
The main challenge in the retriever module is finding the optimal
trade-off between retrieval efficiency and retrieval quality. The re-
trieval efficiency refers to how fast the relevant information can
be obtained, which involves accelerating encoding, efficient in-
dexing, batch querying in the datastore, etc. The retrieval quality
refers to how relevant the information can be retrieved, which
involves chunk representation learning, advanced approximate
nearest neighbor search algorithms, etc.

Retrieval Fusions aims to leverage the retrieved information
to augment the generation. These fusion techniques can be catego-
rized into three major types: query-based fusion, latent fusion, and
logits-based fusion. The query-based fusion augments inputs with
retrievals before feeding them into the generators. The logits-based
fusion focuses on the output logits of generators and fuses the
retrievals logits for more robust logits. The latent fusion refers to
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(a) Building the retriever.

It met with positive
sales in Japan , and was
praised by both Japanese
and western critics . After
release , it received
downloadable content ,
along with an expanded
edition in November of
that year . It was also
adapted into manga and
an original video
animation series . …

The game began
development in 2010 ,
carrying over a large
portion of the work done
on Valkyria Chronicles II .
While it retained the
standard features of the
series , it also underwent
multiple adjustments ,
such as making the game
more forgiving for series
newcomers . …
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Figure 2: Two stages of using the retriever.

introducing retrieval representations into the latent representations
of generators, thus implicitly improving the models’ performance.

Generatormodules can be classified into two branches of gener-
ators: default generators and retrieval-augmented (RA) generators.
The default generators include most pre-trained/fine-tuned large
language models, such as GPT-series models [12, 123, 129, 130],
Mistral models [77], and Gemini-series models [5, 117, 135]. The
RA generators refer to the pre-trained/fine-tuned generators that
consist of modules for fusing retrievals, such as RETRO [11, 157]
and Enc-Dec [101]. Those generators generate responses or make
predictions.

The workflow of RAG involves three steps: 1) retrieving the
relevant information from external databases based on given inputs;
2) fusing the retrieved information with inputs or intermediate
states based on the fusion techniques; 3) making predictions by
generators based on the input and corresponding retrievals.

3 RETRIEVER
Figure 2 shows the two stages for using the retriever, which involves
first building the retriever and then querying the retriever. The
following sections will introduce details about each stage.

3.1 Building the Retriever
This section will explain how to build a retriever using a large natu-
ral language corpus. As shown in Figure 2 (a), the process involves
three steps: chunking corpus, encoding chunks, and building the
vector database. Specifically, building the vector database includes
building the ANN index and storing the data with key-value pairs.

3.1.1 Chunking Corpus. Chunking techniques generally refer to
dividing large documents into small text chunks [11, 14, 46, 70, 120],
which is an indispensable key step in the process of building the
retriever. The intuitions behind chunking techniques are, (1) The
texts or embeddings used for the indexing should be semantically
independent, containing one core idea for models to encode. Short

texts are more likely to be ambiguous, for example, the word “apple“
can refer to a fruit or a company. (2) Encoding a long sequence
document would result in considerable resource overheads when
using existing transformer-based models, while processing shorter
text chunks can significantly accelerate the encoding process and
save memory costs. Therefore, the main challenge of the chunking
techniques is to find the best chunking size to make a better trade-
off between text semantics and encoding efficiency.

To solve the above challenge, three key points need to be con-
sidered when determining the chunking size:

(1) Task’s preference. Different tasks may benefit from differ-
ent kinds of retrieval chunks. For example, question-answer
tasks may prefer short phrases, while summarization tasks
may prefer long documents.

(2) Encoder’s preference. Different encoder models have
varying encoding capabilities on texts with different lengths.
For example, models in the sentence-transformer [136] be-
have better on a single sentence, while the text-embedding-
ada-002 [122] is good at longer texts.

(3) Query’s preference.The length of the user’s queries should
be aligned with the chunking size, which implicitly aligns
the amount of contextual information in chunkswith that in
queries, thus improving the relevance between queries and
retrievals. For example, a retrieval database built on short
phrases may be useless for queries with long documents.

Overall, there is no golden rule for determining the chunking size,
and it depends on the specific RAG scenarios.

There are basically three types of chunking techniques, includ-
ing the chunking with fixed length, the semantic chunking,
and the content-based chunking. Chunking with fixed length
is the simplest way to split documents sequentially using a length
hyperparameter. The semantic chunking cuts documents based on
semantics, such as the period character or the newline character that
represents the end of the sentence. Existing state-of-the-art natural
language processing toolkits, such as NLTK [121] and spaCy [35],
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have provided convenient sentence-cutting methods. The content-
based chunking segments documents according to the unique struc-
tural characteristics. For example, electronic medical records can
be easily segmented based on the sections, or programming codes
can be segmented based on function blocks.

3.1.2 Encoding Chunks. Encoding refers to numericalizing textual
chunks as vector representations (embeddings). These embeddings
generally capture the semantics of the chunks, enabling the retriever
to perform similarity searches based on content relevance rather
than just keyword matching.

According to the sparsity of the embeddings, there are two kinds
of encoding methods, i.e., sparse encoding and dense encoding.
The sparse encoding represents text by creating high-dimensional
vectors where most elements are zero. The basic sparse encoding
is one-hot encoding [54], which represents a word with a high-
dimensional vector as large as the vocabulary table size but only
marks the value corresponding to the presence of the word as one.
The embeddings produced by such encodings are called the one-hot
vector. Other common sparse encodings include:

(1) Bag of Words (BoW) [55]. This encoding improves one-
hot encoding by replacing the zero-one counting with the
frequency counting. However, BoW ignores the syntax and
word order in the documents and focuses on statistical
information, thus only expressing limited semantics.

(2) Term Frequency-Inverse Document Frequency (TF-
IDF) [131]. This encoding not only counts the occurrence
(frequency) of each word but also adjusts these counts based
on how common the word is across all documents (inverse
document frequency). TF-IDF helps emphasize words that
are more descriptive of the document’s content.

(3) BM25 [139] is a probabilistic ranking algorithm used in in-
formation retrieval to estimate the relevance of documents
to a search query by balancing term frequency, inverse
document frequency, and document length normalization,
ensuring robust scoring even for long or short documents.
BM25 focuses on lexical matches and is computationally
efficient, making it a cornerstone of traditional search en-
gines.

Sparse encoding is an efficient way to encode textual chunks. How-
ever, such encoding methods may not capture deeper semantic
meanings well.

The dense encoding generates vectors where each dimension can
capture a range of semantic features, and most elements are non-
zero floating points. The dense embeddings are generally produced
by (deep) neural network models,

(1) BERT [31] and Variants. Bidirectional Encoder Represen-
tation from Transformers (BERT) is a typical pre-trained
transformer model, generating dense semantic embeddings
that capture the contextual information. Other BERT vari-
ants, such as RoBERTa [107], DistilBERT [142], and ELEC-
TRA [21], further improve the semantic representations
with advanced learning techniques.

(2) Siamese Encoders. This is a type of neural network de-
signed to learn the similarity between inputs, which is

usually trained with contrastive learning. Existing state-
of-the-art siamese encoders are DPR [86], SimCSE [43],
Contriever [71].

(3) LLM-based Encoders. This type of encoder benefits from
the powerful representation capability of LLMs. LLMs, which
contain billions of parameters and are pre-trained on vast
amounts of data covering a wide range of topics, have ad-
vanced semantic language understanding capabilities. Typi-
cal LLM-based encoders are text-embedding-ada-002 [122],
bge-embedding [172], mxbai-embedding [144],MedCPT [83].

Compared to sparse encoding, dense encoding leverages deep neu-
ral networks, especially transformers [155], to capture broader
linguistic and semantic information. Dense encodings are widely
used in most representation scenarios. Moreover, some works also
utilized hybrid methods to encode text for leveraging both lexical
and semantic information [94, 109].

3.1.3 Building the Index. Indexing in the vector database aims to
accelerate the search process for data similar to high-dimensional
query embedding. Unlike common indexing in databases, indexing
in the vector database mainly focuses on supporting efficient ap-
proximate nearest neighbor (ANN) search [34, 51, 84] rather than
transaction operations like insertion, deletion, and update. The key
challenge of indexing is making a good trade-off between search
quality and search efficiency. To solve the challenge, there are vari-
ous specific optimizations in both algorithmic aspects and system-
atic aspects to be explored, including choices of similarity metrics,
dimension reduction (DR) on embeddings, advanced ANN indexing,
system-level optimizations, hardware-aware optimization, and so
on. Due to the page limits, this section discusses the optimizations
that significantly affect the search quality and efficiency.

Choice of Similarity Metrics. The similarity metrics are the
basic components in the retriever, which measures the degree of
relevance between query embeddings and chunk embeddings. The
similarity metrics would affect the search quality. Typical simi-
larity metrics include cosine similarity, Euclidean similarity, and
Manhattan distance.

Dimension Reduction on Embeddings. Reducing the dimen-
sionality of embeddings can improve search efficiency but at the
risk of harming the semantic representations. The basic but effec-
tive dimension reduction (DR) is the principal component analysis
(PCA). The PCA is a simple statistical technique that transforms
the original data into a new coordinate system while retaining the
most important features. Another popular and advanced dimen-
sion reduction is locality-sensitive hashing (LSH). LSH significantly
reduces the dimensionality by mapping the data into buckets but
preserves the similarity of the original input data. The intuition
behind LSH is that the nearest neighbors will be mapped into the
same buckets. Unlike LSH, product quantization (PQ) [74] is an-
other popular and effective DR technique for ANN search. The core
idea of the PQ is to divide the high-dimensional space into smaller,
independently quantized subspaces. Each subspace creates a code-
book of different quantized integers to form the representative and
compact vectors. The above techniques enable efficient storage and
fast approximate search but may lose semantic information. Recent
work [19] proposed a new technique named AutoCompressor that
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reduces the dimension of embeddings by compressing the original
context into semantically shorter embeddings.

Advanced ANN Indexing. ANN Indexing generally refers to
the methods or structures used to organize and manage data so that
the approximate-nearest-neighbor search process is optimized for
retrieval quality and retrieval efficiency. This paper will introduce
several advanced ANN indexing techniques.

(1) The InVerted File system with Product Quantization
(IVFPQ) [34] is a simple but effective indexing framework
that combines two powerful techniques to enable an effi-
cient and scalable ANN search process. The main idea of
IVFPQ is first to cluster the data for coarse-grained partition
and then to compress the data within each cluster into sub-
vectors for fine-grained quantization. The coarse-grained
clustering (the IVF component) significantly reduces the
search space, while the fine-grained quantization (the PQ
component) ensures a high retrieval performance.

(2) TheHierarchicalNavigable SmallWorld (HNSW) [111]
uses a hierarchical graph structure to perform ANN search
in high-dimensional spaces efficiently. Specifically, HNSW
treats high-dimensional vectors as nodes and connects them
with their nearest neighbors. The multi-layer graph struc-
ture is determined probabilistically to ensure fewer nodes
at higher layers for efficient search.

(3) Tree-based Indexing aims to organize high-dimensional
vectors in tree-liked structures, such as KD-Trees [134], Ball
Trees [66] and VP-Trees [106]. Typical tree-based indexing
is Approximate Nearest Neighbors Oh Yeah (Annoy) [150],
which uses a forest of trees built based on random projec-
tions to separate the vector space into multiple hyperplanes
for efficient ANN search.

3.1.4 Building the Datastore with Key-Value Pairs. The datastore
used in the vector database is a specialized database that stores
and manages data as a collection of key-value pairs, where keys
are the unique identifiers of high-dimensional embeddings and
values are the domain-specific knowledge. Since the amount of
the data stored in the datastore may be quite large, the storage
engine, such as LMDB [108] or RocksDB [37], should be capable
of efficient retrieval and data persistence. The key point in the
datastore for ANN search is what should be used to be stored
as values. For example, for question-answer tasks, when adding
retrievals to prompts, the naive but effective way is to store the
question embedding as the key and question-answer pairs as the
value. This can help the generation process as retrievals are used as
demonstrations for models. Recent works have proposed various
state-of-the-art vector databases including the indexing and the
datastore, such asMilvus [50, 159], FAISS [34, 84], LlamaIndex [103],
etc.

3.1.5 Code Demonstrations. Algorithm 3.1 shows detailed steps to
build the retriever. Lines 2-8 present the chunking and the encoding
process for a natural language corpus containing multiple docu-
ments. In line 6, algorithm 3.1 takes the concatenation of the current
chunk and the next chunk as the value. Notably, the choice of value
can vary for different tasks. Another practical issue is that the mem-
ory cost of all keys and values may exceed the memory capacity of

Algorithm 3.1 Building the retriever.

Input: Anatural language corpus𝐷 = {𝑑1, . . . , 𝑑𝑛 } for building the knowl-
edge database, an encoder E for encoding chunks.

Output: The index I and the key-value store S.
1: K = {},V = {};
2: for 𝑑𝑖 ∈ 𝐷 do
3: 𝑐1

𝑖
, . . . , 𝑐𝑚

𝑖
= 𝐶ℎ𝑢𝑛𝑘 (𝑑𝑖 ) ; /* Split each data 𝑑𝑖 */

4: for 𝑗 from 1 to𝑚 do
5: 𝑒

𝑗

𝑖
= E(𝑐 𝑗

𝑖
) ; /* Encode each chunk 𝑐 𝑗

𝑖
*/

6: Add 𝑒 𝑗
𝑖
into K and 𝑐 𝑗

𝑖
+ 𝑐 𝑗+1

𝑖
into V; /* Take next chunk as an

exampless */
7: The K and V persist in the storage (e.g., SSD) if necessary;
8: end for
9: end for
10: Build the index I with K ;
11: Store K and V into the key-value store S;
12: return I and S;

Algorithm 3.2 Query the retriever.

Input: A query input 𝑞, an encoder E for encoding chunks, the index I,
the key-value store S, the parameter 𝑘 .

Output: Top-𝑘 nearest neighbor knowledge.
1: 𝑒 = E(𝑞) ;
2: {𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑘 } = I.𝑆𝑒𝑎𝑟𝑐ℎ (𝑒, 𝑘 ) ; /* Search the top-𝑘 nearest

neighbors */
3: {𝑣1, . . . , 𝑣𝑘 } = S.𝐹𝑒𝑡𝑐ℎ ({𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑘 }) ; /* Fetch the values of the

neighbors */
4: {𝑣𝑗1 , . . . , 𝑣𝑗𝑘 } = 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ({𝑣1, . . . , 𝑣𝑘 })
5: return {𝑣𝑗1 , . . . , 𝑣𝑗𝑘 };

the server in the practical scenario. Thus, it is recommended that
the keys and values persist in the storage if necessary.

3.2 Querying the Retriever
This section will explain how to query the pre-built retriever, which
basically includes three steps as shown in Figure 2(b): encoding
queries, ANN search, and post-processing.

3.2.1 Encoding Queries and ANN Search. To align with the pre-
built embedding space, the retriever uses the same encoder to en-
code queries during the querying stage. The ANN search leverages
the pre-built indexing and datastore to find similar data via ANN
searching algorithms and then retrieves the corresponding values.

Searching the index refers to searching the pre-built index,
finding the top-k nearest neighbors, and returning the unique iden-
tifiers of k nearest neighbors. The nearest neighbor search process
depends on indexing algorithms or structures. Taking IVFPQ as an
example, the search process first compares the query embedding
with cluster embeddings and selects several candidate clusters for
further search. Then, within each cluster, the search process per-
forms the same product quantization on the query embedding and
finds the top-k nearest neighbors based on the distance. Finally, the
search process merges all nearest neighbor candidates and re-orders
all candidates for the final top-k nearest neighbors.

Retrieving values from datastore fetches the corresponding
values based on the nearest key identifiers.
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Retrieval fusions in RAG

Query-based
Fusions

Logits-based
Fusions Latent Fusions

Text Concatenation Feature Concatenation

REALM [53]
RAG [95]

REINA [161]
RALM [133]

FID [72]
RETRO-

PROMPT [16]
LUMEN [27]

Ensemble Calibration

kNN-LM [88]
kNN-MT [87]

kNN-Adapter [68]

Robust-kNN-MT [78]
Source-Context [97]

Attention Weighted Addition

RETRO [11]
Enc-Dec [101]

LONGMEM [163]

EAE [40]
ReFusion [169]

Figure 3: The categories of fusion methods in RAG.

Algorithm 4.1 Query-based Fusions.

Input: Aquery input𝑞, top-𝑘 nearest neighbor knowledge {𝑣1, . . . , 𝑣𝑘 }, an
encoder E𝑓 and a decoder D𝑓 for feature concatenation, the generator
G for text concatenation.

Output: Generated response 𝑦.
1: if Use the text concatenation then
2: 𝑥 = 𝑣1 ⊕ . . . ⊕ 𝑣𝑘 ⊕ 𝑞; /* Concatenate neighbor texts and query */
3: 𝑦 = G(𝑥 ) ;
4: else
5: 𝑒𝑞 = E𝑓 (𝑞), 𝑒𝑣𝑗 = E𝑓 (𝑣𝑗 ), 𝑗 ∈ {1, . . . , 𝑘 };
6: 𝑒𝑥 = 𝑒𝑞 ⊕ 𝑒𝑣1 ⊕ . . . ⊕ 𝑒𝑣𝑘 ; /* Concatenate embeddings of neighbors

and query */
7: 𝑦 = D𝑓 (𝑒𝑥 )
8: end if
9: return 𝑦;

3.2.2 Post-Processing. The post-processing involves a set of tech-
niques after the initial retrieval step. These techniques aim to refine,
enhance, or adapt the retrievals based on the specific task objectives.
This section will list some typical post-processing techniques.

Reranking aims to reorder the retrieved knowledge based on
task-specific objectives. The intuition is that the knowledge is re-
trieved based on task-agnostic metrics, such as Euclidean distance.
Existing reranking methods [20, 60, 92, 156] mostly design different
architectures or strategies to reorder the retrieved knowledge.

3.2.3 Code Demonstrations. After building the retriever, this sec-
tion demonstrates the detailed steps of querying the retriever to
obtain the top-𝑘 nearest neighbor knowledge in algorithm 3.2, in-
cluding encoding the query (line 1), performing the approximate
nearest neighbor search (line 2), and fetching the knowledge for
fusion (line 3). These three steps depend on the specific APIs of en-
coders, indexing, and datastore. After obtaining the top-𝑘 retrievals,
optimizations for post-processing are applied (line 4).

4 RETRIEVAL FUSIONS
Retrieval fusions refer to how to leverage the retrieved knowledge
to improve generators’ performance. Basically, there are three types
of retrieval fusions: query-based fusions, logits-based fusions, and
latent fusions. Figure 3 shows the detailed categorization of fusions
and representative works of each retrieval fusion in RAG.

4.1 Query-based Fusion
The simplest and most direct fusion technique is query-based fu-
sion, which integrates the retrieved information with input queries
to generate responses. The query-based fusion can be further cate-
gorized into two sub-classes according to the type of concatenated
information, i.e., text concatenation and feature concatenation.

Text concatenation involves performing query-based fusion with
raw texts, making it particularly suitable for contemporary LLMs
like GPT-4. These models function as black-box systems with lim-
ited interaction capabilities, typically offering only API access to
users. Existing works [53, 95, 133] directly concatenate the input
with the top-𝑘 retrieved sentences/documents to form the query
for generators. To better use the in-context learning capability of
LLMs, some works [36, 98, 156, 161] design effective prompt tem-
plates to integrate retrieved information and inputs. To address the
issue of lengthy inputs after concatenating retrievals, recent stud-
ies [6, 104, 110, 166, 176] have introduced methods for assigning
importance weights to elements within the retrieved knowledge
base and filtering out less relevant contexts based on these weights.

The feature concatenation involves merging the encoded re-
trievals with the input features. A simple yet effective approach
is FID [72], which first encodes the retrieved passages into sparse
or dense representations and then takes the concatenated features
as the input for a generator. The state-of-the-art performance of
the FID demonstrates the efficacy of feature concatenation. The
follow-up works [27, 52, 73, 105, 141] further improve the FID by
jointly tuning the retriever and the encoder, which can enhance
the retrieved knowledge’s representations. Besides, Chen et al. [16]
concatenate the representations of related knowledge as demon-
strations for prompt learning, yielding better generalization.

Algorithm 4.1 presents how to leverage query-based fusions to
fuse retrieved knowledge. For those using text concatenation [53,
133], algorithm 4.1 first concatenates the retrieved texts and inputs
(line 2), then feeds the concatenated input into the generator. No-
tably, since there is a limit to the maximum input length of existing
language models, concatenating too many retrievals would result
in a truncation of the concatenated input, which may cut the given
input. Therefore, designing the prompt template is the key step for
this branch of work. For those using feature concatenation [52, 72],
algorithm 4.1 first leverages an encoder to obtain the feature (line
5), then concatenates the feature of input and retrievals (line 6),
finally passes the concatenated feature into a decoder model (line
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Algorithm 4.2 Logits-based Fusions.

Input: A query input 𝑞, top-𝑘 nearest neighbor knowledge {𝑣1, . . . , 𝑣𝑘 },
the generator G.

Output: Generated response 𝑦.
1: 𝑦𝑞 = G(𝑞) ;
2: for 𝑗 from 1 to 𝑘 do
3: 𝑦𝑣𝑗 = G(𝑣𝑗 )
4: end for
5: if Use ensemble then
6: 𝑦 = 𝜆

∑
𝑗 𝑦𝑣𝑗 + (1 − 𝜆)𝑦𝑞 ;

7: else
8: 𝜆𝑡 = 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 (𝑦𝑞, 𝑦𝑣1 , . . . , 𝑦𝑣𝑘 )
9: 𝑦 = 𝜆𝑡

∑
𝑗 𝑦𝑣𝑗 + (1 − 𝜆𝑡 )𝑦𝑞 ;

10: end if
11: return 𝑦;

7). This branch of work generally incurs high memory costs due to
the long sequence length.

4.2 Logits-based Fusion
The logits-based fusion refers to incorporating the retrieved knowl-
edge into the output layers. Basically, retrieved knowledge would
be fed into the same model to obtain the logits for enhancing
or calibrating the predictions. Therefore, logits-based fusion can
be categorized into two branches, i.e., ensemble-based fusion and
calibration-based fusion.

Ensemble-based fusion treats the logits from the retrieved knowl-
edge as part of an ensemble of predictions. Such ensemble-based
fusion can significantly improve the generalization and robustness
of the model [87, 88, 175]. One notable work of ensemble-based
fusion is kNN-LM [88], which aggregates the logits of the top-𝑘
nearest neighbors’ targets and then interpolates the final predic-
tions. Similar to kNN-LM, Khandelwal et al. [87] propose kNN-MT
to enhance the machine translation using retrievals’ logits, which
is also followed by a branch of works [68, 190].

Different from ensemble-based fusion, calibration-based fusion
uses the logits from the retrieved knowledge as a form of calibration
for the model’s predictions. Specifically, Jiang et al. [78] propose a
confidence-enhanced kNN-MT that refines the kNN distribution
and interpolation weights with the neural machine translation
confidence. Li et al. [97] propose to leverage the source context to
calibrate the retrieval-augmented neural machine translation.

Algorithm 4.2 demonstrates the detailed steps of using the logits-
based fusion to integrate the retrieved knowledge. This branch of
work first treats retrievals as similar data to augment the model
(lines 2-4). For ensemble, algorithm 4.2 leverages a hyperparameter
to fuse the retrieval logits and the output logits (line 6). For calibra-
tion, algorithm 4.2 dynamically determines the parameter based on
the retrieval logits and the output logits (line 8). Then, algorithm 4.2
performs the same fusion with the computed parameter (line 9).

4.3 Latent Fusion
The latent fusion investigates merging the retrieved knowledge
into the hidden states of generators for a better generation. Based
on the introduction method, latent fusion can be further classified
into two categories: attention-based and weighted-addition.

Algorithm 4.3 Latent Fusions.

Input: A query input 𝑞, top-𝑘 nearest neighbors {𝑣1, . . . , 𝑣𝑘 }, the encoder
E, the generator G containing 𝑙 pairs of modules { (M𝐴

1 ,M𝐹
1 ), . . .},

where M𝐴
𝑖

and M𝐹
𝑖
are the attention module and the FFN module

at layer 𝑖 , M𝐶
𝑖
is the cross-attention module used in attention-based

latent fusions.
Output: Generated response 𝑦.
1: if Use the attention then
2: ℎ𝐹0 = 𝑞;
3: for 𝑖 from 1 to 𝑙 do
4: ℎ𝐴

𝑖
= M𝐴

𝑖
(ℎ𝐹

𝑖−1 ) ;
5: 𝑒𝑣1 , . . . , 𝑒𝑣𝑘 = E(𝑣1, . . . , 𝑣𝑘 , ℎ𝐴𝑖 )
6: ℎ𝑅

𝑖
= M𝐶

𝑖
(ℎ𝐴

𝑖
, 𝑒𝑣1 , . . . , 𝑒𝑣𝑘 ) ; /* Cross-attention */

7: ℎ𝐹
𝑖
= M𝐹

𝑖
(ℎ𝑅

𝑖
)

8: end for
9: 𝑦 = 𝐿𝑀_𝐻𝐸𝐴𝐷 (ℎ𝐹

𝑙
)

10: else
11: 𝑒𝑣1 , . . . , 𝑒𝑣𝑘 = E(𝑣1, . . . , 𝑣𝑘 )
12: ℎ𝐹0 = 𝑞;
13: for 𝑖 from 1 to 𝑙 do
14: ℎ𝐴

𝑖
= M𝐴

𝑖
(ℎ𝐹

𝑖−1 ) ;
15: ℎ𝑅

𝑖
= ℎ𝐴

𝑖
+ 1

𝑘

∑
𝑗 𝑤𝑗𝑒𝑣𝑗 /* Weighted sum */

16: ℎ𝐹
𝑖
= M𝐹

𝑖
(ℎ𝑅

𝑖
)

17: end for
18: 𝑦 = 𝐿𝑀_𝐻𝐸𝐴𝐷 (ℎ𝐹

𝑙
)

19: end if
20: return 𝑦;

One notable contribution of attention-based fusion is the Retrieval-
Enhanced Transformer (RETRO) [11]. RETRO represents a pioneer-
ing effort in pre-training retrieval-based LLMs, introducing a new
cross-attention module to integrate retrieved knowledge directly
into the model’s hidden states. A significant finding from this work
is demonstrating a scaling law for the retrieval database, where
RETRO, with a 2 trillion token database, attains performance compa-
rable to that of major models like GPT-3 and Jurassic-1, albeit with
25 times fewer parameters. Customizing the transformer model in
RETRO highlights the potential of pre-trained, retrieval-enhanced
architectures in improving the efficiency and scalability of LLMs.

In addition to RETRO, other studies [13, 28, 101, 167, 170] have
contributed to the field by leveraging new attention modules to in-
troduce external knowledge. Typically, Li et al. [101] have extended
the RETRO model by decoupling the context encoding from the
model inference. Wu et al. [170], Wang et al. [163] store the hidden
attention keys and values into external memory and retrieve the
knowledge from the memory using an attention mechanism.

Due to the high complexity of the attention mechanism, another
branch of work adopts lightweight (weighted) additions to intro-
duce retrieved knowledge. Fevry et al. [40] propose the EAE model
that retrieves top-𝑘 related entities’ embeddings from a learnable
external memory and adds entities’ embeddings to the hidden states
of the model. Wu et al. [169] propose ReFusion, which explores
various learnable reranking schemes to first re-weight the retrieved
knowledge’s embeddings, then use weighted addition to incorpo-
rate them into the hidden states of the model. Those approaches
signify a growing trend towards models that dynamically select
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and integrate relevant knowledge, paving the way for more sophis-
ticated and nuanced language generation and understanding.

Algorithm 4.3 shows the steps of using latent fusion to introduce
the retrieved knowledge into the hidden states of the generator.
For attention-based latent fusion, algorithm 4.3 first encodes the re-
trievals with the output states of the attention module (line 5), then
uses a cross-attention module to fuse the retrieval features into the
hidden state (line 6). Different from attention-based latent fusion,
weighted-addition-based latent fusion adopts a more lightweight
way to incorporate retrieved knowledge (lines 10-19). Algorithm 4.3
first encodes the retrievals before feeding them into the generator
(line 11), which can be done offline and directly stored as values in
the datastore. Then, algorithm 4.3 learns a set of weights to add the
retrieval features on the hidden states of generators (line 15).

4.4 Comparison of Different Fusion Methods
Each fusion method exhibits distinct advantages and limitations.
The query-based fusion method is a simple and straightforward
approach that preserves the raw information from retrieved in-
formation. However, it significantly increases the input sequence
length, resulting in higher computational costs. Additionally, this
kind of method suffers from limited contextual integration capabil-
ities and scalability, as it struggles to effectively combine retrieved
information with the input context.

The logits-based fusion method combines the output logits (or
probabilities) of the base LLM with those from a separate model
(or shared LLM) that processes the retrieved information. This ap-
proach is computationally efficient, as it can process retrievals and
inputs in batches, avoiding increasing the input sequence length.
It decouples the retrieval and generation processes, enabling inde-
pendent improvements to each component. Nevertheless, this kind
of method is limited by its shallow contextual integration, as fusion
occurs only at the output level. Consequently, it may underperform
in complex reasoning tasks that require fine-grained interaction
between the input and retrieved information.

In contrast, the latent fusionmethod integrates retrieved informa-
tion directly into the hidden states (or intermediate representations)
of the LLM. This approach is both scalable and efficient, as it avoids
expanding the input sequence length. Moreover, it facilitates deep,
context-aware integration of retrieved information and supports
fine-grained control over how the information is fused. However,
the latent fusion method necessitates significant architectural mod-
ifications and careful training to achieve optimal performance. In
summary, the choice of fusion method depends on the specific ap-
plication, available resources, and the desired trade-off between
simplicity and performance. Each method offers unique strengths
and weaknesses, making them suitable for different use cases and
operational constraints.

5 GENERATORS
This section introduces representative generators, which are gener-
ally pre-trained on large datasets. Existing generators are mostly
large language models that adopt or modify the transformer-based
architecture [155]. For example, DeepSeek [49], Llama-series mod-
els [153, 154], GPT-series models [12, 123, 129, 130], and Gemini-
series models [5, 117, 135] remove all encoder modules, retaining

only the decoder module, which includes an attention module and a
feed-forward network module. Other advanced techniques, such as
root mean square layer normalization [183], rotary position embed-
ding [151], and group query attention mechanisms [3], have been
incorporated into the design of existing large language models to
enhance their performance.

Existing generators can be generally categorized into two groups,
close-sourced LLMs [12, 123] and open-sourced LLMs [49, 153, 154].
The formers can only adopt query-based fusions to introduce exter-
nal knowledge. While the latter can adapt to all kinds of fusions. Es-
pecially generators using the latent fusion typically would train the
generators from scratch. Those generators integrate novel modules
designed for retrieved information fusion, such as cross-attention-
based module [11, 101, 170]. Their training paradigm combines
pre-training on massive textual datasets with integrating external
retrieved knowledge to establish robust information grounding. As
detailed in Section 4.3, those generators enable dynamic, context-
aware retrieved information incorporation while further improving
the LLM’s generative capabilities.

6 RAG TRAINING AND DATASTORE UPDATE
This section introduces RAG training, which can be categorized
into two main classes: RAG without datastore update and RAG
with datastore update. The former refers to the case where only
trainable parameters in each module of RAG would be updated, and
the knowledge in the datastore would remain the same during the
training stage. The latter refers to the case where the knowledge in
the datastore would be updated, then each module’s parameters in
RAG would be updated in a similar way as the former case.

6.1 RAG without Datastore Update
The goal of training RAG without datastore update is to update the
knowledge stored in the short-term memory of generators based
on the existing knowledge datastore. As shown in Figure 4 (a)-(c),
there are three training cases, i.e., training the retriever, training
the generator, and jointly training the retriever and generator.

6.1.1 Training retriever. Considering the case of no datastore up-
date, training the retriever generally refers to training the retriever
encoder and rebuilding the indexing. Since sparse encodings rely on
statistical methods without parameters, training the encoder per-
tains only to dense encoding methods. Different training methods
may have different goals, such as improving the semantic represen-
tations, accelerating the encoding process, or learning the domain-
specific representations. The first two goals are often achieved by
replacing the original encoder with a more powerful or tiny en-
coder, such as DistilBERT [142], or TinyBERT [81]. The last requires
training the original encoder on the domain-specific corpus. RE-
PLUG [146] updated the retriever by minimizing KL divergence
between retrieval and LM scores, and asynchronously refreshing
the datastore index. After training the retriever encoder, the vector
database’s embeddings that serve as keys will also change. Thus,
all indexes should be rebuilt with new embeddings. Besides, if the
encoder remains unchanged, the indexing can be updated using
new ANN searching algorithms or re-tuning the hyperparameters.
After the retriever is trained, it can be directly incorporated into
the RAG without updating the generator.

8



Datastore

Inputs

Outputs

Encoder

Indexing

Retriever

Generators

Datastore

Inputs

Outputs

Encoder

Indexing R
et

ri
ev

er

a. Training retriever. b. Training generator.

c. Jointly training retriever and generator.

RAG without Datastore Update RAG with Datastore Update

Retriever

Generators

Inputs

Outputs

Encoder

Indexing

Retriever

Datastore

New Corpus

d. Updating datastore, then training generator.

New Values

Insertion

Query

Update

Retrieval 
Fusions

Generators

Retrieval 
Fusions

Retrieval 
Fusions

forward

backward

database 
operation

Trainable
Embeddings

trainable

frozen
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6.1.2 Training generator. Training the generator involves updating
its parameters or those in the retrieval fusion modules. Since the
generator is generally an LLM, training the LLM is a resource- and
time-consuming process. Fortunately, several parameter-efficient
fine-tuning techniques, such as LoRA [61], are proposed to address
the fine-tuning problem of LLMs. Although the parameters in the
retrieval fusion modules are less than those in the generator, only
fine-tuning those parameters may encounter some training prob-
lems, such as low convergence and overfitting. Jointly tuning the
parameters in the generator and the retrieval fusion modules is a
better way to train the generator and the retrieval fusion modules
if there are sufficient and powerful resources.

6.1.3 Jointly training the retriever and generator. Apart from inde-
pendently training the retriever and the generator, jointly training
the retriever and the generator can be another good choice for better
performance on downstream tasks. The primary challenges involve
computational complexity from large-scale retrieval and marginal-
ization over latent documents, alongside training instability due to
potential retrieval collapse and interdependent retriever-generator
feedback loops. Additionally, sparse gradients from discrete re-
trieval steps and approximation errors from fixed top-𝑘 document
selection limit effective end-to-end optimization. Typically, com-
plex indexes, such as FAISS [34], are not a suitable choice during
the fine-tuning stage.

Existing works generally leverage the complex indexes to pre-
select a small subset of nearest neighbors as candidates, then choose
the final top-𝑘 nearest neighbors by performing thematrix-multiplication
operations. REALM [53] and RAG [95] both unify retriever and lan-
guage modeling by treating retrieved documents as latent variables
and optimizing end-to-end via gradient descent. They both used
Maximum Inner Product Search (MIPS). RAG [95] only updated

the encoder in the retriever, but REALM [53] also asynchronous re-
freshed the indexing. Atlas [73] jointly pre-trained the retriever and
generator, using different loss functions (such as attention distilla-
tion and perplexity distillation) to optimize the retriever. Besides, it
also asynchronous refreshed the indexing. Experimental results in
these works demonstrate that joint training is an end-to-end opti-
mization that can lead to better coordination between the retriever
and the generator and improve the contextual understanding of the
generator.

6.2 RAG with Datastore Update
As shown in Figure 4 (d), the scenario involves two stages: updating
the knowledge database, then training the retriever and the genera-
tor. There are three cases for updating the knowledge database, i.e.,
updating with trainable embeddings, updating with new values,
and updating with new corpus. In the first case, values generally
are trainable embeddings and are simultaneously/asynchronously
updated with parameters in the RAG [16]. The last two cases usually
refer to updating the knowledge database with up-to-date infor-
mation. Taking question-answer corpus as an example, updating
with new values refers to updating the answer to existing questions,
while updating with new corpus refers to adding new question-
answer pairs. To update the value of existing keys requires first
querying the existing key-value pairs and then performing in-place
updates. For a new corpus, the datastore first needs to perform
insertion operations, then rebuilds or updates the indexes as new
keys are added. After updating the datastore, training the retriever
and the generator is similar to RAG without datastore updates.
However, this training step is not always necessary, thanks to the
in-context learning capability of LLMs.
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7 RAG EVALUATION AND BENCHMARK
Retrieval-Augmented Generation (RAG) systems integrate the capa-
bilities of large language models (LLMs) with external knowledge
retrieval to advance text generation tasks in natural language pro-
cessing (NLP). Evaluating RAG systems requires a dual focus on
retrieval quality and generation performance to ensure the system
effectively leverages external knowledge and produces accurate,
contextually appropriate outputs. Recent research has introduced
domain-specific benchmarks and comprehensive evaluation frame-
works to address these challenges.

For retrieval quality, Pipitone et al. [128] proposed a bench-
mark tailored for RAG systems in the legal domain, employing
key retrieval metrics such as Precision@K and Recall@K to as-
sess the relevance and ranking of retrieved documents. Adlakha et
al. [2] expanded the evaluation scope by incorporating correctness,
faithfulness, and human evaluation to assess retrieved information,
alongside novel token-overlap metrics for finer-grained analysis.

On the generation side, Hui et al. [69] introduced a benchmark
suite for RAG systems in real-world document analysis, utilizing
metrics such as accuracy, F1 score, and exact match score to evaluate
answer quality. Similarly, Xiong et al. [174] developed a medical
RAG benchmark to systematically compare the performance of
medical RAG systems, emphasizing domain-specific evaluation
criteria.

Recent advancements have further enriched the evaluation land-
scape by proposing more systematic and comprehensive method-
ologies. Chen et al. [15] identified four fundamental RAG abili-
ties—noise robustness, negative rejection, information integration,
and counterfactual robustness—as key evaluation dimensions. Saad-
Falcon et al. [140] introduced ARES, an automated RAG evaluation
system, which assesses RAG systems using context relevance, an-
swer faithfulness, and answer relevance. Building on this, Friel et
al. [41] extended the evaluation framework by incorporating addi-
tional metrics such as context utilization and answer completeness,
providing a more holistic assessment of RAG system performance.
These efforts collectively highlight the growing emphasis on rigor-
ous, domain-specific, and multi-dimensional evaluation methods
to ensure RAG systems meet the demands of diverse applications
while maintaining high retrieval and generation quality standards.

8 TASKS
This section lists several classical tasks in the NLP domain and
introduces advanced RAG techniques used to solve these tasks.

8.1 Language Modeling
Language modeling is the task that requires the prediction of the
probability distribution of the next word or character given a se-
quence of words or characters, which is also named the next-token
prediction task. Language modeling has become the fundamental
task for pre-training large language models, which can measure
the models’ generation capability using the perplexity metric. The
formal definition is as follows: given such a sequence of tokens
𝑥1, . . . , 𝑥𝑛 called Prefix, the language modeling task aims to model

its probability via next-token prediction,

𝑝 (𝑥1, . . . , 𝑥𝑛) = 𝑝 (𝑥1) ·
𝑛∏
𝑖=2

𝑝 (𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1), (3)

where the conditional probabilities 𝑝 (𝑥𝑖 |𝑥1, . . . , 𝑥𝑖−1) are modeled
by a parameterized language model.

Recent works mainly leverage RAG further to improve lan-
guage modeling capability in the pre-training stage. A branch of
works [11, 101, 163, 170] modifies the architecture of generators
by adding a new cross-attention module in each transformer block
for introducing retrieval knowledge. The intuition of those works
is that given the similar Prefixes and their next tokens (retrieving
stage), the pre-trained model can calibrate the model’s prediction
using the cross-attention module to capture the pattern between the
next token and prefix (model forwarding stage). Zhong et al. [191]
propose to augment the language model with three types of re-
trieval memories/databases (local memory, long-term memory, and
external memory) and optimize the next-token probability distribu-
tion with nearest neighbors retrieved from the memories/databases.
Another branch of works [53, 68, 88, 133, 177] focuses on augment-
ing the inputs or outputs of generators with retrievals. Guu et
al. [53] and Ram et al. [133] concatenate the retrieved knowledge
with inputs and feed the retrieval-augmented inputs into the gener-
ators. Other works [68, 88, 177] fuse the logits of inputs as well as
retrievals at the final output layer and generate the final probability
distribution based on the interpolated results. Those works believe
that the concatenated/fused retrievals can provide useful context
information on inputs/outputs to improve models’ robustness dur-
ing the pre-training stage. Besides, Doostmohammadi et al. [33]
focus on pre-training models with a semantic retriever (BM25) and
achieve a better language modeling performance.

8.2 Machine Translation
Machine translation (MT) leverages computational linguistics al-
gorithms to translate text or speech from one language to another
automatically. The goal of MT is to produce an accurate and fluent
translation, preserving the meaning of the original text while adher-
ing to the grammatical and stylistic norms of the target language.
MT systems have evolved from rule-based machine translation
(RBMT) to statistical machine translation (SMT) and, more recently,
to neural machine translation (NMT). In particular, NMT methods
have significantly improved translation quality by leveraging deep
learning techniques, which thus will be the focus of this section.

RAG techniques can further enhance MT by incorporating ex-
ternal knowledge into the translation process. The simplest way is
to concatenate the similar translation examples into the inputs or
fuse the logits of similar translation examples at the output layer.
For example, some works [18, 161] retrieve similar translations
according to the source text and concatenate corresponding target
texts or pairs of source and target texts as examples into inputs.
Other works [60, 87, 190] feed the retrieved source text into the
models and obtain the logits of the next target tokens, then aggre-
gate all logits to generate the final predictions. Moreover, Jiang et
al. [78] and Li et al. [97] use the logits of retrieved examples to
calibrate the aggregated logits, improving the robustness of the
generation. Another branch of works [191, 192] injects external
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knowledge into the objective function during the training stage,
refining the representation space with similar translations. Besides,
Cai et al. [13] encode similar translations and store them as the trans-
lation memory, then introduce the knowledge from memory with
a cross-attention module. Instead of improving the performance, a
branch of work focuses on accelerating the generation efficiency
on MT tasks, such as searching from a pre-built subset [29, 116] or
a dynamic datastore [24], searching by chunks [113].

8.3 Text Summarization
Text summarization is the process of condensing a larger text docu-
ment into a shorter version, preserving key information and the
overall message. This task can be broadly categorized into two types:
extractive summarization, which involves selecting and compiling
parts of the original text, and abstractive summarization, which
entails rewriting the essence of the text in a new, concise form. The
goal is to produce a coherent and fluent summary that encapsulates
the most critical information from the source material.

RAG techniques can significantly enhance text summarization
tasks by leveraging external knowledge and similar documents to
inform the summarization process. [18, 38, 98, 161] simply con-
catenates the retrieved similar summaries into inputs to generate
summarizations. Instead of concatenating texts, other works fuse
features at the intermediate layers by cross-attention [10], or at
the output layers by logits ensemble [60]. Besides, Jiang et al. [80]
argue that retrieving for every generation may not always be the
best choice and propose to retrieve external knowledge during the
generation process adaptively.

8.4 Question Answering
Question Answering (QA) is a fundamental task in NLP that in-
volves building systems capable of automatically answering human
questions in natural language. QA systems can be broadly classi-
fied into two categories: open-domain, where the system answers
questions about virtually anything, and closed-domain, focusing
on a specific area of knowledge. The primary challenge in QA is
understanding the question’s intent and retrieving accurate, rele-
vant information from a vast collection of data to provide a concise
answer. Due to the page limits, this paper only discusses the works
of open-domain QA systems.

RAG techniques combine information retrieval withmodel-based
generation, which is highly suitable for QA systems. In particu-
lar, open-domain QA systems usually first require searching for
knowledge from the Internet or large-scale databases, then generate
the corresponding answers according to the retrieved knowledge.
Naturally, given similar questions and corresponding answers as
demonstrations which are concatenated into inputs [64, 98, 161],
generators in RAG can learn the pattern between questions and
answers and infer what answers should be. For some specific QA
tasks where a set of reference documents is given, retrievers in RAG
would retrieve the relevant documents for concatenation, and then
generators in RAG would read the context then generate the final
answers via the self-attention mechanism [7, 53, 93, 133], which is
similar to solving a reading comprehension problem. Besides, Fabbri
et al. [36] focus on designing effective templates for re-organizing
the concatenated contexts. Baek et al. [8] leverage the knowledge

graph to retrieve the related facts for the input questions, then
feed their concatenation and inputs into the generators. Instead of
directly concatenating texts, another branch of works focuses on
joining the retrieval embeddings with input embeddings for the
encoder-decoder models [27, 72, 73, 141].

Some works incorporate the external knowledge in the hidden
states or the final logits of generators. For the fusion in the hidden
states, the key is what kind of knowledge representation would be
injected, such as entities [28, 40], chunks [11, 158], documents [17].
For the fusion in the logits, most works combine the logits of re-
trievals and inputs by ensemble techniques [53, 95, 119, 146].

Instead of designing different knowledge fusions for QA sys-
tems, existing works also improve QA systems with RAG from
other aspects. Some works [48, 102, 125] use retrieved question-
answering pairs as extra training data. Some works optimize the
retriever module, e.g., improving the keys’ representation when
building the retriever database [132], replacing the indexing with
a pre-trained ranking model [181], or enabling retrieving phrases
with two queries [118]. Other works focus on accelerating the gen-
eration efficiency of RAG. Jong et al. [26] propose the layer-sparse
cross-attention to speed up the decoding. Some works [7, 80, 165]
observe that the retrievals may not always provide useful informa-
tion during the generation process and learn to determine when to
retrieve. Moreover, Sun et al. [152] combine the RAG with agents
to iteratively reason the final results.

8.5 Information Extraction
Information Extraction (IE) is a critical task in NLP to automati-
cally extract structured information from unstructured and semi-
structured text sources. This task encompasses several sub-tasks,
including Named Entity Recognition (NER), Entity Linking (EL),
Coreference Resolution (CR), Relation Extraction (RE), etc. The goal
is to identify and classify key elements from text and understand
the relationships between them, thereby converting textual data
into a structured format amenable to analysis and interpretation.

With RAG techniques, addressing IE tasks can be significantly
improved in terms of not only performance but also interpretability.
In NER tasks, Wang et al. [164] first retrieve similar sentences
and then concatenate the ranked retrievals for better semantic
representations. Ren et al. [138] show that naive RAG may not
address Event Argument Extraction (EAE) tasks. Thus, they adopt a
sampling-based method to guarantee the same distribution of event
labels between retrievals and inputs then concatenate retrieval texts
into inputs for better performance in EAE tasks. Table augmentation
is also a challenging task, which requires extracting information
from tables. Glass et al. [45] propose to extract information in a
retrieval-augmented manner.

8.6 Text Classification
Text classification tasks are common in NLP applications. Senti-
ment analysis, a prominent text classification task in NLP, entails
identifying and categorizing the emotional tone conveyed in a text.
For example, given a sentence of “I love to watch movies”, the anal-
ysis models should determine whether it has a positive attitude or a
negative attitude. The attitude in sentiment analysis can range from
positive to negative or can be neutral, nuanced, and even mixed.
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The sentiment analysis task is crucial for understanding consumer
feedback, monitoring brand reputation, and gaining insights into
public opinion on various issues.

RAG techniques can significantly enhance sentiment analysis
with different external knowledge fusion strategies. Li et al. [98]
concatenate the retrieved options and corresponding prompt-based
labels with input options. Other works [16, 52] concatenate the
retrieval embeddings with input embeddings before feeding them
into the decoder. Some works fuse the retrieval features into the
hidden states of generators via cross-attention [17, 163] or ranking-
based addition [169]. Besides, other works focus on fusing the logits
of retrievals with the output logit using ensemble techniques [179,
185]. Except for knowledge fusions, Min et al. [118] enable locating
knowledge in phrases more accurately via two queries.

8.7 Dialogue Systems
Dialogue systems, also known as conversational agents or chatbots,
are designed to simulate conversation with human users, either in
text or speech form. These systems can be categorized into twomain
types: task-oriented systems [65], which assist users in completing
specific tasks such as booking tickets or ordering food, and open-
domain systems, which aim to carry on a general conversation on a
wide range of topics [147]. The core challenge in developing effec-
tive dialogue systems lies in understanding user intent, maintaining
context, and generating coherent, relevant responses.

Existing works improve the dialogue system with RAG mostly
via the query-based fusions. Some works [18, 90, 100] concate-
nate the retrieved history conversations with current inputs. Other
works [18, 39, 105] first leverage an encoder to encode the history
responses, then feed the concatenated embeddings into a decoder
to generate new responses.

9 APPLICATIONS
9.1 LLM-based Autonomous Agents
LLM-based autonomous agents are intelligent software systems
that leverage the power of LLMs to perform tasks without the need
for continuous human intervention [99, 160, 171]. These agents
use LLMs as a brain or controller [67], and extend their abilities
through multimodal perception [173], tool utilization [143] and
external memory [124]. Especially, external long-term memory for
agents functions as the knowledge datastore in RAG, which pro-
vides agents with the capability to incorporate external knowledge
over extended periods. Therefore, applying RAG would be bene-
ficial to access a broader range of information, improving agents’
decision-making and problem-solving abilities [187]. This section
explores how LLM-based agents can leverage RAG from two per-
spectives.

Using RAG to Retrieve from External Memory. LLM-based
agents can utilize RAG to access and retrieve information from their
own external memory [56, 114, 188]. This external memory serves
as a knowledge base that the agent can draw upon to enhance its
understanding and decision-making. When faced with a query or a
task, the agent can use RAG to retrieve relevant information from
this memory, which is then integrated into the generation process
of the LLM. This allows the agent to produce responses or solutions

that are informed by a wider range of knowledge, leading to more
accurate and contextually relevant outcomes.

The ability to tap into a vast external memory enables the agent
to continuously learn and adapt based on new information, making
it more effective over time. Using Tools to Search the Web and
RAG for Up-to-Date Information. In addition to retrieving infor-
mation from its own memory, an LLM-based agent can use tools to
search the web for the most current information [143]. This capabil-
ity is particularly useful for tasks that require up-to-date knowledge,
such as news summarization, market analysis, or responding to
rapidly evolving situations. Once the agent retrieves the latest in-
formation from the web, it can use RAG to integrate this data into
its generation process. By combining the LLM’s natural language
understanding with real-time data from the web, the agent can
generate responses that are not only contextually relevant but also
reflect the latest developments. This approach enhances the agent’s
ability to provide accurate and timely information, improving its
effectiveness in dynamic environments.

In both cases, RAG plays a crucial role in augmenting the capabil-
ities of LLM-based agents by enabling them to access and leverage
a wider range of information, whether it’s from their own external
memory or from real-time sources on the web. This leads to more
informed decision-making and enhances the overall performance
of the agents.

9.2 Frameworks
Frameworks like Langchain [91] and LLaMAindex [103] pose a sig-
nificant impact on enhancing the practical implementation of RAG.
Langchain and LLaMAindex exemplify the integration of sophisti-
cated retrieval mechanisms with generative models, facilitating the
seamless incorporation of external data into the language genera-
tion process. This section will introduce these two representative
RAG frameworks in details.

Langchain is a framework designed to augment the capabilities
of language models by integrating them with external knowledge
sources and databases. It acts as a middleware that facilitates the
interaction between language models and various data retrieval
systems, enabling a more informed and accurate generation of re-
sponses. The core functionality of Langchain involves orchestrating
the flow of information from external databases into the generative
process of language models, enhancing their ability to leverage
context and specific knowledge in their responses. This integration
plays a crucial role in enabling language models to perform tasks
that require access to up-to-date or detailed information that is not
contained within the model’s initial training data.

LLaMAindex is a specialized data framework that focuses on or-
ganizing and indexing vast amounts of data to improve the retrieval
capabilities of language models. This framework supports efficient
querying mechanisms, allowing language models to quickly access
relevant information from a structured repository. LLaMAindex is
designed to be highly scalable and can handle diverse data types,
from text documents to structured databases. The indexed data
supports a wide range of applications, from simple fact retrieval
to complex analytical tasks, making it an indispensable tool for
enhancing the information retrieval phase in language models.
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Both Langchain and LLaMAindex are deeply connected to the
concept of RAG. Langchain enhances RAG by providing a structured
way for language models to interact with external databases and
knowledge sources during the generation process. On the other
hand, LLaMAindex serves as a powerful backend for RAG systems
by ensuring that the retrieval process is both fast and relevant.
Together, Langchain and LLaMAindex enhance the capabilities of
RAG by ensuring that the language models are not only generating
text based on their internal knowledge but are also capable of
pulling in external data to provide responses that are contextually
enriched and informationally robust.

10 DISCUSSION AND FUTURE DIRECTION
Despite the success of the RAG for natural language processing,
some challenges should be considered. This paper highlights these
challenges to inspire future research and provides possible future
research directions in RAG for NLP.

10.1 Retrieval Quality
The retrieval quality largely determines the performance of the
generator. Park et al. [126] investigated imperfect retrieval’s effect
and demonstrated that unanswerability or contradiction of a docu-
ment set, which frequently leads to hallucinations. However, Ren
et al. [137] demonstrated that the improvement brought about by
the increase in the number of supporting documents is not entirely
due to the increase in recall. To this end, using various evalua-
tion methods referred to in Section 7 for retrieval information will
be more beneficial to model generation. The retrieval quality in-
volves the following four key factors that must be designed. The
first consideration is determining the optimal key to use in the
vector database. This process typically involves subjective decision-
making and requires human effort to design effectively. The naive
idea is to choose inputs for the given tasks, treating each task as a
QA problem.

The second is the choice of embedding model. After deter-
mining the key, the next step is leveraging embedding models to
convert text into vector representations. Models such as BERT [31],
RoBERTa [107], or domain-specific embeddings can be crucial to
determine how well nuances and contextual meanings are cap-
tured. Adapting the embedding model to suit specific data types
or queries better can significantly enhance retrieval quality. This
requires training the model on domain-specific corpora, including
the types of queries and documents the system will encounter.

Thirdly, designing effective similarity metrics is also crucial
to improve retrieval quality. The goal of similarity metrics is to
measure the relevance between the query and the retrieved infor-
mation. Some classical similarity metrics, such as cosine similarity
or Euclidean distance, used for ranking in the recommender sys-
tem can also be used in RAG [47]. Apart from these metrics, some
works explored more complex similarity metrics, such as optimal
transport distance [23], to obtain a task-specific similarity.

Finally, approximate nearest neighbor (ANN) searching is
also a key step in determining what knowledge should be returned
as nearest neighbors. Advanced ANN searching aims to acceler-
ate the retrieval efficiency at the cost of sacrificing the retrieval

quality. Choosing a suitable ANN algorithm, such as product quan-
tization [74] or HNSW [111], requires a good trade-off between
retrieval efficiency and retrieval quality. All of these factors collec-
tively contribute to the retrieval quality of the retriever.

10.2 RAG Efficiency
RAG efficiency is crucial for downstream NLP applications, which
limits the volume of data that can be retrieved. There are two simple
ways to guarantee RAG efficiency without new algorithms, i.e., re-
ducing the volume of data or adding more powerful computing and
memory resources. However, the former may impact the retrieval
quality, while the latter requires more resource cost.

RAG efficiency encompasses the efficiency of the retriever and
the efficiency of retrieval fusions. Retriever efficiency refers to the
time cost of retrieving relevant information, which can be divided
into three parts, i.e., encoding time, ANN searching time, and data
fetching time of the datastore. It is unnecessary to jointly optimize
all three components as the bottleneck would vary from different
database sizes. For smaller retrieval databases, such as those with
fewer than 1million entries, the encoding phase is often the primary
bottleneck, as the vector database can be all stored in the memory.
Several topics, such as model quantization [9, 89], distillation [32,
81], or model pruning [42], are used to accelerate the encoding.

In contrast, for larger databases, the time cost of searching in
the index and fetching data from the datastore becomes the major
bottleneck, as the searching is over a considerable amount of data,
and the fetching involves I/O overheads. In this case, efficient ANN
searching algorithms [34, 51, 84] and system-level optimizations [79,
82] are the main focus.

Retrieval fusion efficiency, which aims to enhance the inference
efficiency when integrating retrievals, is worth to be optimized
for improving the RAG efficiency. For example, the computational
overhead of query-based fusion is often non-negligible due to the
long sequence length. Some works, such as Fid-light [59] and Re-
Fusion [169], mainly target reducing the computations while inte-
grating the retrieved information.

10.3 Discussion for Query-based Fusion in RAG
Twomain query-based fusion RAG concerns must be discussed. The
first is the performance comparison towards long-context LLMs.
Hui et al. [69] demonstrated that RAG system and long-context
LLMs show similar performance for free-form or knowledge-based
tasks (e.g., paper-based and wiki-based Q&A). However, in tasks
requiring numerical reasoning (e.g., financial Q&A), long-context
LLMs underperform compared to RAG, as the verbose content in
long contexts can obscure key facts and hinder precise reasoning.
Additionally, RAG tends to outperform long-context mechanisms
in smaller LLMs, which struggle to process large volumes of data
effectively. The second concern is improving the query-based fu-
sion method, which is prevalent in modern RAG systems. Recent
works used prompt engineering strategies [52, 95], query refine-
ment techniques [178], calibration-based strategies [7, 80], and it-
erative RAG [145] to improve the query-based fusion RAG. Among
these strategies, prompt engineering and calibration offer improved
results with minimal overhead, while iterative retrieval-augmented
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generation (RAG) and query refinement prioritize higher computa-
tional costs in exchange for potential accuracy gains. Prompt engi-
neering and query refinement depend on manual tuning, whereas
calibration and iterative RAG are more automation-friendly but
require high-quality, robust data. Simpler strategies, such as prompt-
ing, are easier to deploy but lack flexibility, while more complex
methods like iterative RAG provide greater adaptability at the ex-
pense of stability. These approaches can be combined (e.g., refined
queries with iterative loops and calibrated prompts), though such
synergies must carefully balance the compounded drawbacks, such
as increased latency and complexity.

10.4 Choices of Fusions
This paper introduces three kinds of retrieval fusions, where each
fusion is worth further exploring. Query-based fusions concatenate
the texts or embeddings of retrieved knowledge with inputs. These
methods have better interpretability and are easy to apply even only
when the API of LLMs is provided. However, concatenation leads to
a long sequence of inputs, thus resulting in a large computational
overhead in the attention and truncation of inputs. Some works [6,
169] aim to improve efficiency when integrating retrievals, while
others [10, 163] focus on improving the efficiency when increasing
the model input length.

Conversely, latent-based fusions amalgamate information at a
deeper, more abstract level, which may capture more nuanced rela-
tionships between the retrieved information and the query. How-
ever, these fusions significantly lack interpretability and often re-
quire pre-training or fine-tuning to adjust the retrieval embeddings
or reweight the retrievals. Therefore, enhancing the interpretability
of such latent-based fusions is also worth exploring in the future.

Logits-based fusions incorporate information at the decision
level, thereby offering a potentially more flexible and robust inte-
gration of data from various sources. Nonetheless, these fusions
may oversimplify the fusion process, diminishing the richness of
the retrieved information by reducing them to logit values. Mean-
while, such fusions require performing all inference of retrievals,
which is also a time-consuming process.

Apart from applying one kind of fusion in practical applications,
combining different fusions is also worth exploring for better per-
formance. These fusion methods are not mutually exclusive, as they
focus on augmenting the different stages of generators, i.e., inputs,
hidden states, and outputs. Besides, during the generation, when to
fuse retrieved knowledge is also a significant problem worthy of
further exploration [112].

10.5 RAG Training
As introduced in Section 6, RAG training includes two branches
of works, RAG with/without datastore update. For RAG without a
datastore update, the main challenge is how to jointly optimize all
parameters in RAG. This may involve new loss functions with mul-
tiple objectives, new optimizations for efficient tuning parameters
in the retriever and generator, or other training strategies.

For RAG with datastore update, one challenge is how to align
the retrieval representations with the generator’s representations.
Although the time cost of the update operation in datastore cannot

be ignored, some works [16] reduce the update frequency by asyn-
chronously updating, thus achieving the alignment of knowledge
representation and model’s representation. Another challenge is
when to retrain/fine-tune the generator in RAG when a new cor-
pus is added. Due to the in-context learning capability of existing
LLM-based generators and high training overhead, retraining/fine-
tuning the generator or directly inferring the generator becomes a
challenging choice for different scenarios. Recently, some efficient
training strategies [30, 61] have been proposed to accelerate the
fine-tuning process, which can be taken into consideration.

10.6 Cross-Modality Retrieval
Retrieving cross-modality information in NLP tasks can greatly
enhance the quality and richness of the representations, leading
to improved performance. First, cross-modality information, such
as combining text with images, videos, or audio, provides a richer
context to the content [62]. For instance, when language is ambigu-
ous, accompanying images can clarify meanings difficult to convey
through text alone. Second, different modalities can contribute vari-
ous types of information that are not accessible from a single source.
For example, visual data can provide spatial, color, and action cues,
while textual data can offer detailed descriptions, emotions, or
abstract concepts. Combining these can lead to a more compre-
hensive understanding of the data. Moreover, Models trained on
multi-modal data typically exhibit increased robustness and gener-
alizability [168]. These models are adept at associating information
across diverse inputs, mitigating overfitting to the peculiarities of a
single modality. This attribute is particularly valuable in real-world
applications of NLP, such as in autonomous vehicles, where sys-
tems must interpret textual information from signs or dialogues and
sensory data from the surrounding environment to make informed
decisions. Furthermore, multi-modal data can resolve ambiguities
that cannot be resolved within a single modality. For example, the
phrase "bank" can refer to either a financial institution or the side of
a river, and visual context can help disambiguate this. Last, human
communication is inherently multi-modal, incorporating elements
such as gestures, facial expressions, and tone of voice. Systems ca-
pable of processing multiple modes of communication can interact
with humans in a manner that is both more natural and intuitive. In
conclusion, integrating cross-modality information in RAG for NLP
tasks not only enhances the richness and quality of data representa-
tions but also significantly improves the systems’ comprehension,
interaction capabilities, and adaptability to diverse applications.

11 CONCLUSION
In this survey, we delve into the development of RAG within the
field of natural language processing. First, this paper introduces
the components of RAG and their functionalities. Subsequently,
this paper elaborates on each step involved in retriever, discussing
the diverse techniques. Furthermore, this paper categorizes the
retrieval fusions, evaluating the strengths and weaknesses inherent
in each retrieval fusion technique. Besides, this paper discusses the
RAG training, including RAG with/without datastore update. Then,
this paper presents RAG evaluation and benchmarking, and ex-
plores how RAG can be adapted for various NLP tasks and provides
practical applications of RAG in real-world scenarios. Conclusively,
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this paper identifies ongoing challenges and suggests directions for
future research to foster advancements in this evolving area.
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