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Abstract

Offline optimization is a fundamental challenge in science and engineering, where the goal is to
optimize black-box functions using only offline datasets. This setting is particularly relevant
when querying the objective function is prohibitively expensive or infeasible, with applications
spanning protein engineering, material discovery, neural architecture search, and beyond. The
main difficulty lies in accurately estimating the objective landscape beyond the available data,
where extrapolations are fraught with significant epistemic uncertainty. This uncertainty
can lead to objective hacking (reward hacking)—exploiting model inaccuracies in unseen
regions—or other spurious optimizations that yield misleadingly high performance estimates
outside the training distribution. Recent advances in model-based optimization (MBO) have
harnessed the generalization capabilities of deep neural networks to develop offline-specific
surrogate and generative models. Trained with carefully designed strategies, these models are
more robust against out-of-distribution issues, facilitating the discovery of improved designs.
Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive
review. To bridge this gap, we present the first thorough review of offline MBO. We begin
by formalizing the problem for both single-objective and multi-objective settings and by
reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches
into two key areas: surrogate modeling, which emphasizes accurate function approximation
in out-of-distribution regions, and generative modeling, which explores high-dimensional
design spaces to identify high-performing designs. Finally, we examine the key challenges
and propose promising directions for advancement in this rapidly evolving field including safe
control of superintelligent systems. For a curated list of resources, please visit our repository.
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1 Introduction

Offline optimization is a fundamental challenge in science and engineering, where the objective is to optimize
a black-box function using only a fixed dataset (Trabucco et al., 2022). This setting has broad applications,
including protein engineering (Sarkisyan et al., 2016b), material discovery (Hamidieh, 2018), and neural
architecture search (Lu et al., 2023). For instance, in neural architecture search, the goal is to identify
high-performing architectures solely from existing architecture-performance pairs, without training any new
models which can be expensive. Unlike online optimization, which allows direct interaction with the objective
function, offline optimization is particularly relevant when querying the function is costly, time-consuming, or
infeasible (Angermüller et al., 2020; Barrera et al., 2016b; Sample et al., 2019b).

Offline optimization is challenging because it requires accurately estimating the landscape of the black-box
function beyond the available offline data (Trabucco et al., 2021). Extrapolating into these unseen regions
suffers from significant epistemic uncertainty in two problematic scenarios. On the one hand, it may trigger
reward hacking (Skalse et al., 2022) (which we refer to as objective hacking in our text), wherein the model
exploits inaccuracies within the objective estimation in regions beyond training data. On the other hand, it
can give rise to other forms of spurious optimization – especially in guided generative modeling – that yield
misleadingly high performance estimates outside the training distribution (Brookes et al., 2019).

Recent advances in offline model-based optimization (MBO) have harnessed the generalization power of deep
neural networks to develop offline-specific surrogate and generative models. This progress has spurred two
complementary lines of research. One line focuses on building surrogate models that extrapolate beyond
the offline dataset, enabling robust function approximation and reliable gradient-based optimization to
improve existing designs (Trabucco et al., 2021; Fu & Levine, 2021). The other line explores the use of
generative models to navigate high-dimensional design spaces more effectively, facilitating the discovery of
high-performing designs underrepresented in the offline data (Kumar & Levine, 2020; Kim et al., 2024b).
Importantly, these two lines are not mutually exclusive – surrogate and generative models often complement
each other to enhance overall performance (Fannjiang & Listgarten, 2020; Chen et al., 2024).

Despite the rapid progress in offline MBO, both newcomers and seasoned researchers find it challenging to
stay abreast of its evolving methodologies. Furthermore, the diversity of approaches and objectives has led to
a fragmented landscape, making it difficult to discern overarching trends. To address these challenges, we
present the first comprehensive review on offline MBO, synthesizing recent advances, categorizing key areas,
and highlighting emerging directions. This review serves as both an accessible introduction for newcomers
and a structured synthesis for experts looking to navigate the evolving frontiers of offline optimization.

In this work, we formalize the problem settings for both offline single- and multi-objective optimization
(Section 2). We also introduce a generative modeling perspective that frames offline optimization as conditional
generation, compare single- and multi-objective settings, and discuss the connections between online and
offline optimization. Additionally, we review recent benchmarks and propose a taxonomy that categorizes
them into four application areas (Section 3): (1) synthetic function, (2) real-world system, (3) scientific
design, and (4) machine learning (ML) model. Evaluation costs tend to increase – and our understanding of
the underlying mechanisms tends to decrease – from categories (1) through (3). We address category (4)
separately, given its growing prominence in the ML community. For each category, we detail the associated
tasks, including the number of objectives and the oracle evaluators. We also provide an overview of the
commonly used evaluation metrics, including usefulness, novelty, and diversity.

Next, we categorize existing approaches into two key research lines—as we have discussed above: surrogate
modeling (Section 4) and generative modeling (Section 5). Importantly, these approaches are not mutually
exclusive; we explore in detail how they interact and complement one another. Finally, we conclude our paper
(Section 6) by outlining promising future directions in this rapidly evolving field. In particular, we highlight
several key areas for further exploration: (1) robust and realistic benchmarking, (2) uncertainty estimation of
surrogate models, (3) causal graphical surrogate models, (4) advanced generative modeling, (5) and application
to LLM alignment and AI Safety. An outline of our paper organization is depicted in Figure 1.
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2 Problem Definition

In offline optimization, the goal is to discover a new design, denoted by x∗, that maximizes the objective(s)
f(x). This is achieved using an offline dataset D, which consists of N designs paired with their property
labels. In particular, the dataset is given by

D = {(xi, yi)}N
i=1 . (1)

where each design vector xi belongs to a design space X ⊆ Rd, and each property label yi ∈ Rm contains
the corresponding m objective values for that design. The function f : X → Rm maps a design to its
m-dimensional objective value vector.

Single-Objective Optimization In offline single-objective optimization (SOO), only one objective is
considered (i.e., m = 1), leading to the formulation:

x∗ = arg max
x

f(x) .

For instance, the design x might represent a neural network architecture, with f(x) denoting the network’s
accuracy on a given dataset (Zoph & Le, 2017).

A prevalent method for addressing this problem involves training a deep neural network (DNN) surrogate
model, fϕ(·), with parameters ϕ on an offline dataset using supervised learning. The model parameters are
optimized by minimizing the mean squared error between the model’s predictions and the true labels:

ϕ∗ = arg min
ϕ

1
N

N∑
i=1

(
fϕ(xi) − yi

)2
. (2)

After training, the surrogate fϕ∗(·) is employed as a stand-in for the true objective function, and design
optimization proceeds via gradient ascent updates:

xt+1 = xt + η∇xfϕ∗(x)
∣∣∣
x=xt

, for t ∈ [0, T − 1] , (3)

where η is the learning rate and T is the total number of iterations. The final design, xT , is then taken as
the candidate solution.

A critical challenge of this method is the accurate estimation of the objective landscape beyond the region
covered by the training data. In these extrapolated regions, the surrogate model’s predictions are subject to
significant epistemic uncertainty, potentially leading to objective (or reward) hacking. In other words, the
model might exploit inaccuracies in regions lacking training data. We discuss strategies for building robust
surrogates in Section 4.

Multi-Objective Optimization Offline multi-objective optimization (MOO) extends the framework to
simultaneously address multiple objectives using the dataset D. In this setting, the goal is to find solutions
that balance competing objectives effectively. For instance, when designing a neural architecture, one might
seek to achieve both high accuracy and high efficiency (Lu et al., 2023). Formally, the multi-objective
optimization problem is defined as:

Find x∗ ∈ X such that there is no x ∈ X with f(x) ≻ f(x∗) , (4)

where f : X → Rm is the vector of m objective functions and the symbol ≻ indicates Pareto dominance.
Specifically, a solution x is said to Pareto dominate another solution x∗ (denoted f(x) ≻ f(x∗)) if

∀i ∈ {1, . . . , m}, fi(x) ≥ fi(x∗) and ∃j ∈ {1, . . . , m} such that fj(x) > fj(x∗) . (5)

In simpler terms, x is no worse than x∗ in every objective and is strictly better in at least one. A design is
considered Pareto optimal if no other design in X Pareto dominates it. The collection of all such Pareto
optimal designs forms the Pareto set (PS), and the corresponding set of objective vectors,

{f(x) | x ∈ PS} , (6)
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is known as the Pareto front (PF). The overarching aim in MOO is to obtain a diverse set of solutions that
closely approximates the PF, thereby capturing the best possible trade-offs among the objectives. Analogous
to the single-objective case, a naive approach involves modeling each of the m objectives with separate
surrogate models and combining their predictions through a weighted sum to compute the gradient (Ma
et al., 2020). However, this approach fails to account for conflicts among objectives and is also susceptible to
objective hacking. We discuss approaches for addressing these issues in Section 4.

Generative Modeling In addition to the surrogate modeling discussed above, generative modeling is
another key ingredient in offline optimization. In fact, offline optimization methods can be viewed through the
lens of conditional generation, where the objective is to model the distribution p(x | yc) with yc representing
the desired conditions. By applying Bayes’ rule, this distribution can be decomposed as

p(x | yc) ∝ p(x) p(yc | x) . (7)

From this perspective, offline optimization methods generally fall into two categories: inverse and forward.
Inverse methods directly train a conditional generative model for p(x | yc). For example, MIN (Brookes
et al., 2019) employs a GAN-based inverse mapping from y to x to generate designs that meet the desired
specifications. Forward methods, on the other hand, leverage a surrogate model for p(yc | x) to guide an
unconditional generative model p(x). For instance, ROMA (Yu et al., 2021) computes gradients in the
latent space of a VAE to iteratively refine generated designs. Similarly, gradient-based approaches such as
COMs (Trabucco et al., 2021) and ICT (Yuan et al., 2023) fall into this category, although many of these
methods do not explicitly model the generative component p(x).

Since the literature on offline optimization often integrates surrogate and generative modeling, we separate
their discussion in this review to provide clearer insights into each component: surrogate modeling is discussed
in Section 4, while generative modeling is covered in Section 5.

Comparison between SOO and MOO Both single-objective optimization (SOO) and multi-objective
optimization (MOO) strive to optimize objectives using only an offline dataset, which leads to some inherent
similarities. In both settings, surrogate models are built to approximate the objective function(s), and
generative models are employed to explore the design space efficiently.

However, significant methodological differences emerge due to their distinct optimization goals. One major
distinction lies in the training of surrogate models. In SOO, the surrogate is typically trained to minimize
the prediction error for a single objective while incorporating relevant priors, thereby facilitating direct
gradient-based optimization. In contrast, MOO must capture the interdependencies among multiple objectives,
often by leveraging their relationships to enhance surrogate modeling. This challenge usually necessitates the
use of multi-task learning strategies (Chen et al., 2018; Yu et al., 2020).

Another fundamental difference is the sampling strategy. In SOO, the focus is on a single property, which
simplifies conditional generation to either computing the gradient of that property (Chen et al., 2023a) or
building an inverse mapping from the property to the design (Kumar & Levine, 2020). These approaches,
however, are not directly applicable to MOO, where improvements in one objective might lead to the
deterioration of another. Consequently, MOO relies on Pareto-aware sampling strategies to navigate the
trade-offs among conflicting objectives. For example, Paretoflow (Yuan et al., 2024a) assigns uniform weight
vectors to different objectives to guide flow matching towards the Pareto front.

In summary, while SOO and MOO share foundational principles and both contend with out-of-distribution
issues, MOO introduces additional challenges related to balancing competing objectives, thereby requiring
specialized modeling and optimization strategies.

Relation with Online Optimization (Active Learning). Online optimization (often referred to as
active learning in this context) involves iteratively querying an expensive ground-truth objective function
for new design points and then using these new data points to update a surrogate model (Jain et al., 2022;
Gruver et al., 2023; Frey et al., 2025). In high-cost domains such as drug discovery—where each experiment
(e.g., a clinical trial) can be prohibitively expensive (Angermüller et al., 2020)—these queries must be made
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sparingly under a limited budget. The crux of online optimization is to strategically select new points that
are both likely to yield high rewards and carry substantial uncertainty, thereby maximizing information gain
and accelerating the search.

Bayesian models, such as Gaussian Processes (GPs) (Williams & Rasmussen, 1995; Rasmussen & Williams,
2006), are commonly used for online optimization because they provide principled uncertainty quantification.
However, GPs have cubic complexity in the number of data points, which becomes infeasible for large datasets.
As a result, deep neural networks equipped with approximate uncertainty estimation techniques (e.g., Monte
Carlo dropout or ensembles) are often employed, though their uncertainty estimates can be less reliable in
practice (Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017).

In offline optimization, there is no ability to query the objective after an initial dataset has been col-
lected—effectively a zero-round version of active learning. Since no further data can be acquired, offline
methods often avoid high-uncertainty regions where the surrogate model might be highly inaccurate or risky.
Consequently, offline optimization algorithms often adopt more conservative strategies, prioritizing regions of
the design space that are both high reward and well-understood according to the existing dataset.

Despite these differing strategies—online seeking to reduce uncertainty versus offline avoiding it—both
paradigms rely on accurate and scalable uncertainty quantification. Scalable methods for uncertainty
estimation can thus benefit both fields. We highlight two candidate methods: Neural Processes, which
circumvent the cubic complexity of GPs (Garnelo et al., 2018), and GFlowNets, which can offer amortized
Bayesian posterior inference over the parameter space to estimate model uncertainty (Bengio et al., 2023).

Futhermore online and offline approaches can synergize naturally. In the online phase, the goal is to collect a
high-quality dataset by judiciously querying promising and uncertain regions. Once the budget for queries is
exhausted and the dataset becomes static, offline optimization can then leverage the collected data for a final
decision. In this way, online optimization focuses on acquiring the most informative dataset possible, while
offline optimization focuses on extracting the best solution from the available data.

3 Benchmark

In this section, we present a systematic overview of benchmarks in offline MBO by first categorizing the
available tasks in Section 3.1 and then discussing the evaluation metrics in Section 3.2.

3.1 Task

We begin by grouping tasks into four main categories: (1) synthetic function, which leverages closed-
form mathematical functions to provide efficient, scalable, and analytically transparent benchmarks (see
Section 3.1.1); (2) real-world system, which addresses practical engineering challenges in domains such as
robotics (see Section 3.1.2); (3) scientific design, encompassing applications in biology, chemistry, and material
science (see Section 3.1.3); and (4) machine learning model, which includes problems like neural architecture
design (see Section 3.1.4). Evaluation costs tend to rise—and our understanding of the underlying mechanisms
tends to diminish—as we move from category (1) to category (3). We address category (4) separately,
reflecting its increasing significance within the ML community.

It is important to note that these categories are not mutually exclusive; some benchmarks may belong to
more than one category. For example, Ehrlich (Stanton et al., 2024) can be viewed as a synthetic function
task for biological sequence optimization, yet we mainly discuss it under scientific design to better reflect
its application context. Each subsubsection first discusses the intrinsic advantages and limitations of its
task category and then introduces the commonly used tasks within that category. For each task, we report
its size (i.e., the offline dataset), space (design space), dimension (design dimension), # Obj (number of
objectives), and oracle (evaluation oracle type), as summarized in Tables 1, 2, 3, and 4. This organization
offers a balanced view of both the theoretical appeal and practical applicability of each task category.
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3.1.1 Synthetic Function

Synthetic function tasks use closed-form mathematical functions to generate offline datasets for offline MBO
methods. During evaluation, these same functions serve as oracles to benchmark these methods. These
functions can, in principle, also be applied in an online context; however, in this discussion they serve as
benchmarks in the offline setting, where algorithms are limited to using only the offline dataset.

Advantages (1) Computational efficiency: With closed-form expressions, these functions are quick to
compute, allowing for extensive experimentation. (2) Scalability: Their ability to be defined for arbitrary
input dimensions and numbers of objectives makes them highly adaptable for evaluating algorithms on
large-scale and many-objective problems. (3) Analytical transparency: The known analytical forms enable
exact computation of the Pareto front along with other key properties like gradients and Hessians, which
helps in thoroughly understanding both the problem landscape and the behavior of optimization algorithms.

Limitations (1) Lack of realism: The inherent simplicity and often smooth nature of synthetic functions can
fail to capture the complexities of real-world problems, including discontinuous or highly constrained landscapes.
For example, in protein sequence design, a single amino acid change can cause a dramatic, discontinuous
shift in properties, and the design space itself is highly constrained by biological functionality (Angermüller
et al., 2020; Jain et al., 2022). Consequently, performance on synthetic tasks may not directly translate
to practical applications. (2) Limited adaptability for deep learning: Deep neural networks have achieved
significant success in areas such as image (Krizhevsky et al., 2012), language (Brown et al., 2020), and
molecule (Jumper et al., 2021), and recent work has extended these models to offline MBO (Chen et al.,
2023b; Watson et al., 2023). However, synthetic data generated by mathematical functions often lack the
rich, complex patterns found in real-world data (e.g., molecular structures), which prevents deep learning
methods from fully demonstrating their potential in these benchmarks.

Below, we introduce specific synthetic function tasks for both single-objective and multi-objective optimization,
covering most tasks from commonly used benchmarks such as the BayesO benchmark (Kim, 2023; Surjanovic
& Bingham, 2013), holo-bench (Stanton et al., 2024), pymoo (Blank & Deb, 2020), and Off-MOO-Bench (Xue
et al., 2024). We describe each synthetic function class in Table 1. Due to the nature of synthetic function,
the evaluation oracle is analytical, meaning that the mathematical form is known. Furthermore, the offline
dataset size can be arbitrarily large (Any); however, researchers typically use defaults such as 50 000 (Chen
et al., 2024) for SOO or 60 000 for MOO (Xue et al., 2024; Yuan et al., 2024a) (as indicated in parentheses).
Similarly, many synthetic functions offer the flexibility to operate over any number of dimensions or objectives,
and conventional practice often employs specific values (also indicated in parentheses). Finally, the design
space in synthetic functions is generally continuous.

Single-Objective Optimization The SOO benchmarks are designed to assess algorithm performance
across various landscapes with many local minima, bowl-shaped, plate-shaped, valley-shaped, steep ridges/drops,
and more, each posing unique challenges to optimization (Surjanovic & Bingham, 2013).

• Many local minima Functions with many local minima are designed to challenge an algorithm’s
exploration capabilities by presenting a rugged landscape filled with numerous suboptimal traps. Common
examples in this category include Ackley (Bäck, 1996), Bukin 6 (Jamil & Yang, 2013), Cosines (Kim
& Choi, 2023), Drop-Wave (Jamil & Yang, 2013), Eggholder (Jamil & Yang, 2013), Gramacy & Lee,
Griewank (Gramacy & Lee, 2010), Holder Table (Jamil & Yang, 2013), Kim1 (Kim & Choi, 2023),
Levy (Jamil & Yang, 2013), Rastrigin (Jamil & Yang, 2013), and Shubert (Jamil & Yang, 2013).

• Bowl-shaped Bowl-shaped functions with a convex landscape offer a comparatively smooth and unimodal
environment. Their gradual curvature makes them ideal for assessing the convergence speed and stability
of an algorithm under benign conditions. Representative functions in this class include Bohachevsky (Jamil
& Yang, 2013), Kim2 (Kim & Choi, 2023), Kim3 (Kim & Choi, 2023), and Sphere (Picheny et al., 2013).

• Plate-shaped Plate-shaped functions are characterized by expansive flat regions or plateaus where
gradients are nearly zero over large areas of the search space. Although dedicated plate-shaped functions
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Table 1: Overview of the synthetic function tasks.

Task Name Size Space Dimension # Obj Oracle

Many local minima Any (50000) Continuous 1 - Any (60) 1 Analytical
Bowl-shaped Any (50000) Continuous 2 - Any (60) 1 Analytical
Plate-shaped Any (50000) Continuous Any (60) 1 Analytical
Valley-shaped Any (50000) Continuous 2 - Any (60) 1 Analytical
Steep ridges/drops Any (50000) Continuous 2 1 Analytical
Other SOO tasks Any (50000) Continuous 2 - 6 1 Analytical
DTLZ Any (60000) Continuous Any (7 - 10) Any (3) Analytical
Omnitest Any (60000) Continuous 2 2 Analytical
VLMOP Any (60000) Continuous 1 - 6 2 - 3 Analytical
ZDT Any (60000) Continuous 10 - 30 2 Analytical

are less prevalent in standard benchmarks, some tasks like Zakharov (Jamil & Yang, 2013) exhibit
plateau-like regions.

• Valley-shaped Valley-shaped functions possess a narrow, elongated channel leading to the global optimum.
This class—exemplified by the Three-Hump Camel (Jamil & Yang, 2013), Six-Hump Camel (Jamil & Yang,
2013), and Rosenbrock (Picheny et al., 2013)—tests an algorithm’s precision and its ability to efficiently
traverse an ill-conditioned, elongated basin without overshooting the target.

• Steep ridges/drops Functions characterized by steep ridges or abrupt drops exhibit sudden, dramatic
changes in the objective landscape. Representative examples include De Jong 5 (Jamil & Yang, 2013),
Easom (Jamil & Yang, 2013), and Michalewicz (Jamil & Yang, 2013).

• Others There are some synthetic benchmark functions that do not neatly fit into the previously discussed
classes but are nonetheless widely used in single-objective optimization. Examples include Beale (Jamil
& Yang, 2013), Branin (Picheny et al., 2013), Colville (Jamil & Yang, 2013), Goldstein-Price (Picheny
et al., 2013), Hartmann 3D (Jamil & Yang, 2013), and Hartmann 6D (Jamil & Yang, 2013). Each of them
exhibits unique landscape features such as nonlinearity, moderate modality, or intricate curvature.

Multi-Objective Optimization In addition to SOO tasks, many synthetic functions have been developed
for the MOO setting, where algorithms often optimize multiple conflicting objectives simultaneously. We dis-
cuss four families of synthetic functions for MOO—DTLZ, Omnitest, VLMOP, and ZDT—each characterized
by distinct Pareto front properties and varying levels of complexity.

• DTLZ The DTLZ family (Deb et al., 2005) is designed to be scalable with respect to both the number of
objectives and the decision variables, making them versatile for testing algorithms under various conditions.
For example, DTLZ1 features a linear Pareto front, while DTLZ2 through DTLZ7 introduce different
degrees of nonlinearity, multimodality, and deceptive features.

• Omnitest Omnitest typically involves two objectives and presents a challenging landscape marked by
convexity and multiple local optima (Deb & Tiwari, 2008).

• VLMOP These functions (van Veldhuizen & Lamont, 1999) are characterized by intricate, concave or
disconnected Pareto fronts, which challenge algorithms to capture a diverse set of trade-off solutions.

• ZDT Functions in the ZDT family exhibit diverse Pareto front geometries, from convex to concave and
even disconnected fronts (Zitzler et al., 2000). For example, ZDT1 and ZDT4 feature convex Pareto fronts,
whereas ZDT2 and ZDT6 exhibit concave ones. Unlike other functions in the ZDT family, ZDT3 has a
disconnected Pareto front.
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3.1.2 Real-World System

Real-world system tasks encapsulate the inherent complexity of practical engineering design. While many of
these tasks still utilize analytical functions for construction, unlike the purely synthetic functions, they are
derived from models of real-world systems (Tanabe & Ishibuchi, 2020). Alternatively, some tasks employ
simulations (Brockman et al., 2016) or surrogate models (Tanabe & Ishibuchi, 2020) as oracles. Overall,
compared to the synthetic function category, these tasks incur higher evaluation costs and provide less
transparency into the underlying mechanisms.

Advantages (1) Enhanced realism: These tasks are constructed from real engineering systems, and they
incorporate real-world constraints such as physical feasibility, manufacturability, energy consumption, and
cost, thereby faithfully representing practical design challenges. (2) Heterogeneous input representation: The
design spaces often involve a mix of continuous, categorical, and permutation-based variables, mirroring the
multifaceted nature of real-world problems. This variety can more effectively test offline MBO algorithms.

Limitations (1) Reduced analytical transparency: While analytical functions offer closed-form expressions,
real-world system tasks often rely on simulations or surrogate models that obscure the underlying mechanisms.
(2) High evaluation cost: For some simulation tasks, computational expenses tend to be high, which may
limit the number of feasible experiments (Brockman et al., 2016). (3) Limited adaptability for deep learning:
Although these tasks are more realistic than pure synthetic functions, their design is often quite basic (Tanabe
& Ishibuchi, 2020) and may still lack the rich, intricate patterns necessary for deep learning methods to fully
demonstrate their potential, similar to the synthetic function tasks.

Below we introduce real-world system tasks. Due to the wide range of tasks, classifying them by application
area proves challenging. Therefore, we propose to categorize these tasks based on their oracle type—analytical,
simulation, and surrogate—which we believe better reflects the inherent characteristics of each task.

Analytical For some real-world system tasks, the underlying mechanisms are well understood and can be
readily represented by mathematical functions. These functions serve as analytical oracles. For example, the
RE2-4-1 task in the RE suite (Tanabe & Ishibuchi, 2020) involves minimizing both the structural volume and
the joint displacement of a four-bar truss. This problem is formulated based on Newtonian physics, allowing
the oracle function to be derived analytically. Other analytical tasks from the RE suite—such as various truss
designs (Cheng & Li, 1999; Coello Coello & Pulido, 2005; Qian et al., 2025), reinforced concrete beams (Amir
& Hasegawa, 1989), pressure vessels (Kannan & Kramer, 1994), hatch covers (Amir & Hasegawa, 1989), coil
compression springs (Lampinen & Zelinka, 2000), welded beams (Ray & Liew, 2002), disc brakes (Ray &
Liew, 2002), speed reducers (Farhang-Mehr & Azarm, 2002), gear trains (Deb & Srinivasan, 2006), conceptual
marine design (Parsons & Scott, 2004), and water resource planning (Ray et al., 2001)—fall into this category.

The industrial suite benchmarks (Qian et al., 2025) further enrich this category, which are formulated as
constrained optimization problems. For instance, the optimal operation task targets improvements in chemical
processing quality, where the objective is to enhance the alkylating product subject to 14 constraints designed
to limit onboard fuel and launcher performance. The process flow sheeting problem and process synthesis
problem focus on efficient process design under practical constraints. Both objective functions and constraints
are expressed mathematically for these tasks. Besides, some classic combinatorial optimization problems
in industrial applications—such as the multi-objective traveling salesman problem (Lust & Teghem, 2010),
the multi-objective capacitated vehicle routing problem (Zajac & Huber, 2021a), and the multi-objective
knapsack problem (Ishibuchi et al., 2015)—have analytical formulations that allow for rapid computation.
However, these problems are not typically considered traditional design problems.

Simulation Sometimes, even when the underlying mechanisms of a task are well understood, their
complexity prevents us from expressing the oracle in a closed analytical form. In such cases, we rely on
numerical simulations to obtain the oracle, despite the high computational cost often involved. A typical
example is robot morphology design. Robot morphology design tasks focus on optimizing the structural
parameters of simulated robots to maximize performance on specific tasks, as exemplified by the Ant and
D’Kitty Morphology tasks (Trabucco et al., 2022). In the Ant Morphology task, the objective is to optimize 60
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continuous parameters—encoding limb size, orientation, and location—for a quadruped robot from OpenAI
Gym (Brockman et al., 2016) so that it runs as fast as possible. In the D’Kitty Morphology task, the goal is
to adjust 56 continuous parameters defining the D’Kitty robot from ROBEL (Ahn et al., 2020) to enable a
pre-trained, morphology-conditioned neural network controller, optimized using Soft Actor Critic (Haarnoja
et al., 2018), to navigate the robot to a fixed location. Both tasks utilize the MuJoCo simulation (Todorov
et al., 2012) to run simulations for 100 time steps and average the results over 16 independent trials, thereby
providing reliable yet computationally efficient performance estimates.

This category also includes tasks for electronics design. These tasks focus on optimizing hardware configurations
and accelerator architectures to meet specific performance and efficiency objectives, typically involving selecting
parameters for processing elements, memory hierarchies, and dataflow patterns, directly influencing factors
such as latency (Kumar et al., 2022). The simulator oracle is used to evaluate the performance and feasibility
of accelerator designs by providing latency, power, and other metrics. Other simulation tasks include radar
waveform design (Hughes, 2007) for signal processing, heat exchanger (Daniels et al., 2018) and car structure
design (Kohira et al., 2018) for engineering optimization, TopTrumps (Volz et al., 2019) problem for game-
based optimization, and MarioGAN (Volz et al., 2019) for procedural content generation. These tasks provide
valuable and diverse benchmarks for offline MBO.

Table 2: Overview of the real-world system tasks.

Task Name Size Space Dimension # Obj Oracle

RE suite Any (60000) Mixed 3 - 7 2 - 9 Analytical / Surrogate
Industrial suite Any (2000 - 7000) Continuous 2 - 7 1 Analytical
Ant / D’Kitty 25009 Continuous 60 / 56 1 Simulation
Electronics design 8000 Categorical 10 1 Simulation

Surrogate Some real-world system tasks utilize surrogate models to approximate the oracle based on
simulation data, thereby reducing the cost of simulations or actual experiments. For instance, several tasks
within the RE suite (Tanabe & Ishibuchi, 2020)—including vehicle crashworthiness (Liao et al., 2008), car side
impact design (Jain & Deb, 2014), rocket injectors (Vaidyanathan et al., 2003), and car cab design (Deb & Jain,
2014)—employ surrogate oracles. The surrogate parameters are determined using the response surface method
on data sampled from simulations. As a result, these problems differ from their original counterparts, and
the inherent approximations may introduce bias that could affect the reliability of performance assessments.

3.1.3 Scientific Design

In contrast to the engineering problems discussed earlier, scientific design tasks focus on addressing fundamen-
tal scientific questions. In the context of offline MBO, these tasks span domains such as biology, chemistry,
and materials science, with the aim of discovering novel designs with desired properties. The offline setting is
particularly relevant here, as conducting online experiments for these designs is often prohibitively expensive.

Advantages (1) Realistic challenge: Scientific design tasks emulate real-world discovery processes—such as
protein sequence design, molecular optimization, and material discovery—that are sufficiently complex to
differentiate between various offline MBO methods. Successful optimization in these domains can significantly
accelerate scientific discovery and benefit humankind. (2) Deep learning benchmarking: Scientific design
problems, including those in biological (Jumper et al., 2021) and chemical (Kuenneth & Ramprasad, 2023),
exhibit rich and meaningful patterns. These characteristics provide a robust platform to reveal the potential
of deep learning-based offline MBO methods.

Limitations (1) Inaccurate oracles: Unlike synthetic functions with well-defined analytical forms, sci-
entific design tasks often rely on approximate oracles—such as surrogate models or physics-based simula-
tions—resulting in less convincing evaluations. (2) Limited scalability: The size of offline datasets in these
tasks is typically quite small, making it difficult to assess the scalability of some methods. Additionally, the
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predetermined nature of the problem settings (e.g., fixed search spaces and objective counts) limits flexibility
in comprehensively benchmarking offline MBO methods.

Below, we present specific scientific design tasks across various domains—namely biology, chemistry, and
materials science. As summarized in Table 3, these benchmarks offer diverse and challenging scenarios for
offline MBO, reflecting the complexity of real-world scientific problems. Given the inherent nature of scientific
design, the design space is typically discrete, and the evaluation oracles are implemented via surrogate,
simulation, analytical, or lookup table.

Biology The biology category encompasses a diverse set of tasks aimed at optimizing biological sequences
to enhance their performance. The primary targets in this category are protein, DNA, and RNA designs.
Together, these tasks provide a rich testbed for evaluating the efficacy and robustness of offline MBO methods
in the life sciences. Below, we describe each design in detail.

• Protein Proteins are sequences composed of 20 standard amino acids, and optimizing these sequences
can lead to improved properties with applications in antibody development (Luo et al., 2022; Chen et al.,
2025) and enzyme engineering (Hua et al., 2024). While many tasks have been proposed for protein design
(see, e.g., YE et al. (2025)), here we focus specifically on those that address sequence design within the
framework of offline MBO.
(1) Green Fluorescent Protein (GFP): Optimizes a 237-length protein sequence to increase fluorescence,
using a dataset of 56, 086 variants (Sarkisyan et al., 2016a). (2) 5’ Untranslated Region (UTR) : Designs
a 50-nucleotide sequence to maximize gene expression, predicting ribosome load based on 280, 000 se-
quences (Sample et al., 2019a). (3) Adeno-Associated Virus (AAV): Optimizes a 28-amino acid segment of
the VP1 protein using 284, 000 variants, targeting improved viral viability (Ogden et al., 2019). (4) E4B
Ubiquitination Factor (E4B): Enhances ubiquitination activity by optimizing 100, 000 mutations (Starita
et al., 2013). (5) TEM-1 β-Lactamase (TEM): Aims to improve thermodynamic stability, leveraging
17, 857 sequences (Ren et al., 2022). (6) Aliphatic Amide Hydrolase (AMIE): Focuses on boosting enzyme
activity, using 6, 629 variants (Wrenbeck et al., 2017). (7) Levoglucosan Kinase (LGK): Targets enzyme
performance improvements, based on 7, 891 mutants (Klesmith et al., 2015). (8) Poly(A)-Binding Protein
1 (Pab1): Optimizes RNA binding efficiency with over 36, 000 sequences (Melamed et al., 2013). (9)
SUMO E2 Conjugase (UBE2I): Focuses on protein function optimization, based on 2, 000 variants (Weile
et al., 2017). (10) Regex: Modifies sequences to maximize bigram counts, simulating sequence editing
operations (Stanton et al., 2022). (11) Affinity maturation (Affinity): Mutates antibody to maximize
binding affinity with the antigen (Chen et al., 2025). (12) Red Fluorescent Protein (RFP): A multi-objective
optimization problem balancing stability and solvent-accessible surface area (Stanton et al., 2022).
In general, most protein properties are evaluated using surrogate oracles trained on large supervised
datasets due to the high cost of direct evaluation. For some properties—such as binding affinity in (11)
and stability in (12)—simulation oracles (e.g., Rosetta (Alford et al., 2017) or FoldX (Schymkowitz et al.,
2005)) can be employed, though these simulations often lack sufficient accuracy. Similarly, properties like
bigram counts can be computed using analytical oracles; however, such tasks tend to be relatively trivial.

• DNA DNA design involves the optimization of sequences comprising four nucleotides (A, C, G, and
T). (1) Transcription Factor Binding 8 (TFB8) : Optimizes transcription factor binding activity in an
8-length sequence space (Barrera et al., 2016a). (2) Transcription Factor Binding 10 (TFB10): Extends
the optimization to a 10-length sequence space, aiming for higher binding affinity (Barrera et al., 2016a).
Trabucco et al. (2022) further process the data to ensure training set given to offline MBO methods is
restricted to the bottom 50%. Oracle evaluation is performed via a lookup table oracle, as the properties
of all possible sequences have been pre-measured.

• RNA RNA design involves the optimization of sequences comprising four nucleobases (A, U, C, and G).
The RNA-Binding task is a typical example. The objective is to optimize a 14-length RNA sequence
to maximize binding activity with a target transcription factor. Kim et al. (2023) adopt three target
transcriptions, termed RNA-Binding-A (for L14 RNA1), RNA-Binding-B (for L14 RNA2), and RNA-
Binding-C (for L14 RNA3). These properties are evaluated using the ViennaRNA package as a simulation
oracle (Lorenz et al., 2011).
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In addition to the above tasks, Stanton et al. (2024) proposes Ehrlich functions, a new class of closed-form test
functions for biophysical sequence optimization. These functions are formulated to encapsulate key geometric
properties—such as non-additivity, epistasis, and discrete feasibility constraints—that are characteristic of
real-world sequence design problems. Their provable solvability, low evaluation cost, and capacity to mimic
realistic biophysical interactions make Ehrlich functions a valuable benchmark in offline MBO and a promising
direction for future research.

Table 3: Overview of the scientific design tasks.

Task Name Size Space Dimension # Obj Oracle

GFP 56086 Categorical 237 1 Surrogate
UTR 280000 Categorical 50 1 Surrogate
AAV 284000 Categorical 28 1 Surrogate
E4B 100000 Categorical 102 1 Surrogate
TEM 17857 Categorical 286 1 Surrogate
AMIE 6629 Categorical 341 1 Surrogate
LGK 7891 Categorical 439 1 Surrogate
Pab1 36000 Categorical 75 1 Surrogate
UBE2I 2000 Categorical 159 1 Surrogate
Regex 42048 Categorical 73 3 Analytical
Affinity 4158 Categorical N/A 1 Simulation
RFP 4937 Categorical 489 2 Simulation
TFB8 32898 Categorical 8 1 Lookup Table
TFB10 50000 Categorical 10 1 Lookup Table
RNA-Binding 5000 Categorical 14 1 Simulation
Ehrlich Any (50000) Continuous 7 1 Analytical
ChEMBL 1093 Categorical 31 1 Surrogate
ZINC 48000 Categorical 257 2 Analytical
Molecule 49001 Continuous 32 2 Surrogate
Superconductor 21263 Continuous 86 1 Surrogate

Chemistry The chemistry category comprises tasks focused on small-molecule design, in contrast to the
large-molecule design tasks typical in the biology category. Numerous benchmarks for small-molecule design
exist (Brown et al., 2019; Huang et al., 2021); in this paper, we restrict our discussion to those commonly
used in offline MBO. Some typical examples include: (1) ChEMBL: Derived from a large-scale drug property
database (Gaulton et al., 2011), this task aims to maximize molecular activity by optimizing the MCHC
value associated with assay CHEMBL3885882. It employs a training set of 1, 093 molecules and a discrete
design space of 31-length sequences over 591 categorical values. This benchmark has been incorporated in
Trabucco et al. (2022), where a random forest surrogate is used as the oracle. (2) ZINC: This benchmark
provides a multi-objective molecule optimization problem involving a small molecule of roughly 128 tokens.
The goal is to improve analytical druglikeness properties such as logP and QED (Stanton et al., 2022). (3)
Molecule: As described in Zhao et al. (2022), this task tackles a two-objective molecular generation problem,
aiming to optimize activities against the biological targets GSK3β and JNK3 in a 32-dimensional continuous
latent space. Candidate solutions are decoded into molecular strings using a pre-trained decoder.

Material Science Unlike biological tasks focusing on large molecules such as proteins, and chemical tasks
centering on small molecules, the material science category is dedicated to designing and optimizing materials
based on complex compositional and structural performance metrics. A typical offline MBO benchmark in
this domain is Superconductor. Derived from a dataset of 21,263 superconductors with annotated critical
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temperatures (Hamidieh, 2018), it has also been incorporated into design-bench (Trabucco et al., 2022). The
goal is to maximize the critical temperature by optimizing an 86-dimensional continuous representation of
material composition, with a random forest surrogate serving as the evaluation oracle.

Some less common tasks include:

• Crystal structure prediction, which aims to identify stable crystal configurations for a given chemical
composition (Qi et al., 2023). These configurations are represented through features such as lattice
parameters and fractional coordinates, and a simulation serves as the oracle to estimate formation energies.

• Battery materials design, where research efforts focus on discovering better active materials for
lithium-ion batteries (Valladares & Others, 2021).

3.1.4 Machine Learning Model

We have discussed three groups of tasks: synthetic function, real-world system, and scientific design. In
addition, a widely adopted task in the ML community is the design of machine learning models. This
process typically involves optimizing architectures, model parameters, and hyperparameters. The evaluation
is generally based on the final performance metrics obtained on a test set.

Advantages (1) Practical relevance: Enhancements in model architectures, parameters, or hyperparameters
can yield significant performance improvements, with applications across deep learning, reinforcement learning,
and more. (2) Rich offline datasets: In contrast to scientific design tasks, machine learning models often have
access to extensive pre-collected datasets, enabling more robust benchmarking. (3) Oracle evaluation: In ML
tasks, oracle evaluation is performed either via lookup table, surrogate, or through real experiment, offering
more accurate assessments compared to the approximate evaluations typical in scientific tasks.

Limitations (1) Limited search space: Although many neural architecture benchmarks provide lookup
tables, the available search spaces are often constrained and overly simplistic. In contrast, real-world
architectures tend to be much larger and more complex, leading to higher evaluation costs. (2) Oracle
variability: The inherent stochasticity in training deep learning models can introduce significant noise in
performance metrics, which may obscure true improvements and complicate benchmarking.

Table 4 summarizes key characteristics of these tasks, covering common benchmarks used in offline MBO
research. We categorize these tasks into three major subcategories—model architecture, model parameter, and
model hyperparameter—which are described in detail below.

Model Architecture Model architecture design, often referred to as neural architecture search, seeks to
automatically discover high-performing network architectures by exploring vast, discrete search spaces.

• Early work (Zoph & Le, 2017) focuses on single-objective optimization and evaluate the discovered
architectures via real experiment. The goal is to identify a 32-layer convolutional neural network with
residual connections that maximizes test accuracy on CIFAR-10. The search space is defined over
architectural hyperparameters such as kernel sizes, selected from {2, 3, 4, 5, 6}, and activation functions
including ReLU, ELU, leaky ReLU, SELU, and SiLU, resulting in a 64-dimensional discrete space with 5
categories per dimension.

• Multi-objective NAS (MO-NAS) extends the search paradigm by simultaneously optimizing multiple
performance metrics of neural architectures (Lu et al., 2023). In many MO-NAS frameworks, architectures
are pre-trained and their performances recorded in lookup tables, enabling rapid evaluation. Typical
objectives include prediction error, model complexity (e.g., number of parameters), and hardware efficiency
metrics (e.g., GPU latency or FLOPs). By jointly optimizing these criteria, MO-NAS aims to identify
architectures that achieve an optimal balance among accuracy, computational cost, and hardware efficiency.
Representative benchmarks include NAS-Bench-201-Test (Krizhevsky, 2009) as well as the C-10/MOP
and IN-1K/MOP suites (Lu et al., 2023).
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Table 4: Overview of the machine learning model tasks.

Task Name Size Space Dimension # Obj Oracle

NAS 1771 Categorical 64 1 Real Experiment
NAS-Bench-201-Test 9375 Categorical 6 3 Lookup Table
C-10/MOP 9375 - 60000 Categorical 5 - 32 2 - 8 Lookup Table
IN-1K/MOP 60000 Categorical 21 - 34 2 - 4 Lookup Table
Hopper 3200 Continuous 5126 1 Simulation
MO-Swimmer 8571 Continuous 9734 2 Simulation
MO-Hopper 4500 Continuous 10184 2 Simulation
HPOBench 10000 Mixed 2-27 1 Lookup Table / Surrogate

Model Parameter Model parameters are typically optimized via loss functions and gradient-based methods.
In the context of offline MBO, these parameters are treated as high-dimensional design variables, with a
particular focus on agent policy parameters. This category of tasks centers on fine-tuning the neural network
weights to enhance performance.

• The Hopper task (Trabucco et al., 2022) aims to design a feed-forward neural network controller for a
2D hopping robot in MuJoCo (Todorov et al., 2012) to maximize the expected discounted return. The
design space encompasses thousands of continuous weight parameters. Crucially, in the offline setting,
the algorithm only has access to a dataset of (policy parameters, return) pairs collected from prior RL
experiments, rather than interacting directly with the environment. Consequently, the policy optimization
becomes a purely data-driven, model-based optimization challenge rather than a traditional learning task.

• Extending this idea to multi-objective scenarios, Xue et al. (2024) introduce MO-Swimmer and MO-Hopper,
where each environment presents two conflicting objectives. In MO-Swimmer, the trade-off is between
forward velocity and energy efficiency, while in MO-Hopper, it is between forward velocity and jumping
height. In both cases, the full set of neural network policy weights constitutes the search space, with data
collected by Xu et al. (2020). The multi-objective policy search thus aims to identify new policies that can
simultaneously balance these competing criteria—without any additional simulation calls.

Model Hyperparameter Model hyperparameters, such as learning rate, weight decay, and batch size, play
a crucial role in controlling the training process. Numerous benchmarks including HPOBench (Eggensperger
et al., 2021) exist for this task, and popular methods like Bayesian optimization (Frazier, 2018) have been
widely applied. The objective is to identify the optimal hyperparameter configuration that maximizes a
performance metric, typically modeled as a black-box function. To the best of our knowledge, few offline
MBO methods have been developed for hyperparameter optimization. This may be because hyperparameter
configurations typically involve simple scalar values, and data-driven offline MBO approaches—often relying
on neural networks to capture complex design patterns—may not be ideally suited for such tasks.

3.2 Evaluation Metric

In this subsection, we present the evaluation metrics that underpin our benchmarking of offline MBO methods.
Although we have described oracle evaluations when discussing the tasks, it is important to elaborate on the
evaluation metrics within this context. The oracle evaluation provides a per-sample usefulness score; however,
a complete assessment requires evaluating a set of samples to measure novelty and diversity. In the following,
we discuss the metrics for usefulness, novelty, and diversity. We assume that a batch B of K candidates (e.g.,
K = 128) is used to evaluate these metrics.

3.2.1 Usefulness

The primary criterion is that the candidate set should contain high-performing solutions. In offline SOO,
where only one property is considered, this usefulness criterion is straightforward. In contrast, in offline MOO,
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usefulness is inherently coupled with diversity, as the quality of the solution set is evaluated based on both its
proximity to the Pareto front and its distribution along that front. We discuss these two settings separately.

Single-Objective Optimization For SOO tasks, usefulness is evaluated by considering the normalized
ground-truth scores of the candidates. Specifically, we examine both the score at the 100th percentile (i.e., the
best design) and the 50th percentile (i.e., the median) as suggested in Trabucco et al. (2022). The normalized
score is computed as:

yn = y − ymin

ymax − ymin
,

where y denotes the oracle evaluation score of a design, and ymin and ymax are the minimum and maximum
scores in the offline dataset, respectively. Additionally, following Jain et al. (2022), the overall performance of
a candidate set B is also quantified by its mean score:

Mean(B) =
∑

(xi,yi)∈B yi

|B|
,

where yi is the oracle evaluation for xi. This metric provides an aggregate measure of the average quality of
the candidate designs.

Multi-Objective Optimization In the MOO setting, usefulness is assessed by evaluating both the
proximity of the candidate set B to the true Pareto front and its distribution along that front, a metric that
naturally also captures diversity. Two widely used metrics are the hypervolume (HV) (Zitzler & Thiele, 1998)
and the inverted generational distance (IGD) (Bosman & Thierens, 2003).

The HV metric quantifies the size of the objective space that is dominated by the candidate set B and
bounded by a reference point r = (r1, r2, . . . , rm). The reference point is typically chosen to be worse than
any observed objective value (i.e., a nadir point). Mathematically, the HV is defined as:

HV (B) = vol

 ⋃
y∈B

m∏
i=1

[yi, ri]

 ,

where
∏m

i=1[yi, ri] represents an m-dimensional hyperrectangle (or box) spanning from the coordinates of y
to the reference point r along each objective, and vol(·) denotes the Lebesgue measure (i.e., volume) of the
union of these hyperrectangles. In simple terms, a larger hypervolume indicates that the solution set is both
close to the Pareto front and well-distributed across the objective space.

The IGD metric measures the average distance from points on the true Pareto front (denoted as PF ) to the
nearest solution in the candidate set B:

IGD(B, PF ) = 1
|PF |

∑
ypf ∈P F

min
y∈B

∥ypf − y∥.

Since the true Pareto front is generally unknown in real-world tasks, most existing studies primarily rely on
HV to evaluate MOO performance (Tanabe & Ishibuchi, 2020; Xue et al., 2024; Yuan et al., 2024a).

3.2.2 Diversity

Diversity quantifies the spread or variability within the set of generated candidate designs (Jain et al., 2022;
Kim et al., 2023; Kirjner et al., 2024). In offline MBO, it is crucial not only to identify high-performing
designs but also to explore diverse regions of the design space, thereby capturing multiple modes of the
black-box function. A common metric for measuring diversity is the average pairwise distance between all
distinct candidates in the set B, defined as:

Diversity(B) = 1
|B|(|B| − 1)

∑
(xi,yi)∈B

∑
(xj ,yj)∈B

(xj ,yj )̸=(xi,yi)

δ(xi, xj),
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where δ(xi, xj) denotes a distance measure (e.g., the Euclidean distance for continuous designs or the
Levenshtein edit distance (Haldar & Mukhopadhyay, 2011) for discrete designs). Alternatively, the median
of the pairwise distances may be used instead of the mean (Kirjner et al., 2024). A higher diversity score
indicates that, on average, the generated designs are more varied within the batch B.

Another related metric is coverage, as adopted in Yao et al. (2025), which evaluates how well the batch of
candidate designs collectively spans the search space. It is computed as:

L1C
(
B

)
= 1

d

d∑
k=1

max
i ̸=j

∣∣∣xik − xjk

∣∣∣,
where d is the number of design dimensions and xik denotes the k-th component of the i-th design xi.
Note that this formulation assumes a continuous representation of the design; discrete designs must first be
embedded into a continuous latent space. Intuitively, a higher coverage value indicates that the designs in B
are more widely spread across each dimension, suggesting improved diversity.

3.2.3 Novelty

Novelty measures the degree to which the newly generated candidate set B differs from the offline dataset D.
In offline MBO, it is important that the proposed candidates not only perform well but also explore regions
of the design space that are distinct from known designs. Novelty is typically quantified by computing the
mean of the minimum distances between each candidate in B and the closest design in D (Jain et al., 2022;
Kim et al., 2023). Mathematically, the novelty score is defined as:

Novelty(B) = 1
|B|

∑
(xi,yi)∈B

min
x∈D

δ(xi, x),

where δ(xi, x) denotes the distance metric between design xi from B and a design x from D. As before, the
Euclidean distance is commonly used for continuous designs, while the Levenshtein edit distance (Haldar
& Mukhopadhyay, 2011) is appropriate for discrete designs. Alternatively, one may use the median of
the minimum distances instead of the mean (Kirjner et al., 2024). A higher novelty score indicates that,
on average, the generated designs are more dissimilar from those in D, thereby fostering the discovery of
innovative and unexplored designs.

Overall Summary Most offline MBO methods (Trabucco et al., 2021; Chen et al., 2023a) primarily focus
on the usefulness metric, as it is the fundamental measure of candidate quality. However, diversity and
novelty are also important for a comprehensive evaluation. We conjecture that this focus is partly due to the
relative ease of demonstrating improvements in usefulness, whereas proving enhancements across all three
metrics for a proposed method is more challenging. We encourage future research to consider all metrics.

Besides, some recent work has proposed alternative metrics beyond the three discussed above. For instance,
Qian et al. (2025) introduces a stability metric that measures an algorithm’s ability to consistently surpass the
performance of the offline dataset during the optimization process. Specifically, this metric evaluates not only
the final design but also all intermediate samples along the optimization trajectory, thereby assessing whether
these intermediate solutions can outperform the best design in the offline dataset—a critical consideration
given the challenge of determining an appropriate stopping point in offline MBO.

4 Surrogate Modeling

As shown in Eq. (2), we typically employ the mean squared error loss to fit the surrogate model—a loss that
can also be interpreted as a maximum likelihood loss when accounting for uncertainty (Chen et al., 2024). In
this work, we decompose surrogate modeling into four key components: input representation, model type,
training strategy, and sampling strategy.
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4.1 Input Representation

The input representation refers to the type of design x, which we categorize into continuous, discrete, and
mixed representations. Since we focus on offline MBO, the ability to compute gradients of x is a vital property
of the surrogate model. For discrete and mixed representations, a common strategy is to transform them into
a continuous space to facilitate gradient computation.

Continuous Continuous representations are the most common and are often used directly in their native
space due to their inherent continuity. For example, in the superconductor task, the search space is an
86-dimensional continuous vector representing the elemental composition of superconductors (Hamidieh,
2018). Other examples include Ant Morphology and D’Kitty Morphology, where the task is to optimize
the morphology of quadrupedal robots using 60 and 56 continuous parameters respectively to enhance
locomotion, and Hopper Controller, which involves optimizing a neural network policy with 5126 continuous
weights to maximize return (Brockman et al., 2016). The continuous nature of these representations naturally
facilitates gradient computation. An interesting case is image optimization; for instance, DeepDream optimizes
continuous images using surrogate gradients to enhance specific features (Mordvintsev et al., 2015).

Even when using continuous inputs, it is common to map them into the latent space of a generative model for
optimization and manipulation, as this latent space can better capture the semantic meaning of the design.
For example, classifier (or surrogate) guidance optimizes the continuous image latent space, steering samples
toward a specific category in diffusion (Dhariwal & Nichol, 2021) and flow matching models (Dao et al., 2023).

Discrete In many real-world applications, the design x is discrete. The most common representation is
categorical encoding, which is suitable for unordered discrete variables. Typical applications include neural
architecture search, biological sequence design, and molecule design. When computing surrogate gradients on
categorically encoded inputs, three strategies are typically employed. First, one may remain in the raw discrete
space and use discrete gradient estimators to approximate gradients (Bengio et al., 2013; Jang et al., 2017;
Chen et al., 2023b). Second, the input can be mapped into a latent space where gradients are more directly
accessible (Luo et al., 2018; Gómez-Bombarelli et al., 2018). Third, the design may be transformed into a
continuous representation through design-specific modeling. For instance, Liu et al. (2019); Fu et al. (2021)
propose continuous relaxations of discrete representations for neural architectures and chemical structures,
respectively, to facilitate gradient computation.

A less common discrete representation is permutation encoding, which is used when the relative order of
elements is crucial. This encoding is typical in problems such as the traveling salesman problem (Lust &
Teghem, 2010) and the capacitated vehicle routing problem (Zajac & Huber, 2021b). However, these problems
generally do not rely on surrogate models since their final solutions can be evaluated efficiently.

Mixed Some optimization problems involve a combination of continuous and discrete variables, leading
to hybrid input representations that require domain-specific surrogate modeling. For instance, in protein
property prediction, a protein is characterized by both continuous atom coordinates and discrete residue types.
A practical surrogate model is to input the discrete residue types into a pre-trained language model to obtain
residue embeddings, and then feed both the residue embeddings and atom coordinates into a graph neural
network for the final prediction (Wang et al., 2022; Zhang et al., 2023; Chen et al., 2023c). In this scenario,
gradient computation leverages strategies developed for both continuous and discrete representations.

4.2 Model Type

Surrogate models can be broadly classified based on their parameterization into parametric and non-parametric
models. Parametric models have a fixed number of parameters determined by their architecture, whereas
non-parametric models adapt their complexity based on the available data (Hastie et al., 2009). In the context
of offline MBO, neural networks are the predominant parametric models, whereas kernel-based models are the
typical non-parametric choices.
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Neural Networks (NN) Neural networks are a class of parametric models where the architecture (e.g.,
the number of layers and neurons per layer) is predetermined prior to training (Salakhutdinov, 2014). These
models approximate the target function by optimizing a fixed set of parameters, making them well-suited for
high-dimensional and complex tasks. Owing to their generalization capabilities and scalability, NN-based
surrogate models have become increasingly popular in offline MBO (Trabucco et al., 2022).

Some approaches use data-agnostic neural networks—such as multi-layer perceptrons (MLPs)—as surrogate
models (Trabucco et al., 2021; Yu et al., 2021; Yuan et al., 2023; Chen et al., 2023a). While these methods
demonstrate the overall effectiveness of the optimization framework, simple MLPs may struggle to accurately
capture the intricacies of complex black-box functions, especially when the design itself contains rich
semantic information. To better exploit domain-specific information, recent works have designed specialized
architectures tailored to the data. For example, Lee et al. (2023) employs a graph neural network (GNN)
designed for modeling molecular properties and guiding molecule generation, while Chen et al. (2025) uses a
protein language model to extract residue embeddings that feed into a GNN for predicting antibody binding
affinity, thereby steering antibody structures towards a more stable conformation.

It is worth noting that besides neural networks, other parametric models—such as linear regression, logistic
regression, polynomial regression, and support vector machines (SVM)—are also useful (Hastie et al., 2009).
However, in offline MBO, these alternatives are used less frequently, as the current surge in offline MBO has
largely been driven by advances in deep NNs due to their superior generalization ability and scalability.

Kernel-Based Model In offline MBO, the offline dataset is often limited, making non-parametric kernel-
based models particularly attractive. Their effective complexity increases with the number of data points,
enabling them to capture intricate function behaviors while providing principled uncertainty estimates (Ras-
mussen & Williams, 2006). Although offline MBO does not allow further queries of the black-box function,
uncertainty quantification remains crucial: it helps identify regions in the design space where the surrogate’s
predictions are less reliable. This information can be used to guide conservative optimization strategies that
avoid over-optimistic predictions in poorly sampled areas.

Chen et al. (2022b) demonstrates that the neural tangent kernel—associated with infinite-width neural
networks—can be more effective than standard kernels like the RBF kernel. Furthermore, Chen et al. (2023b)
introduces a kernel parameterized by pre-trained biological language models for biological sequence design.
In cases where pre-trained models are unavailable, deep kernel learning can be employed to learn the kernel
directly from the data, with scalability achieved via inducing points (Wilson et al., 2016).

Besides kernel-based models, other non-parametric methods—such as k-nearest neighbors (kNN) and random
forests—can also serve as surrogate models. However, these approaches are typically non-differentiable and
do not naturally provide robust uncertainty estimates, which makes them less suitable for gradient-based
optimization in offline MBO (Hastie et al., 2009).

4.3 Training Strategy

To enhance generalization and robustness, surrogate models often incorporate specialized training strategies.
We categorize these into four groups: auxiliary loss, data-driven adaptation, collaborative ensembling, and
generative model integration. Note that a single method can span multiple categories due to its inherent
complexity. In such cases, the method may be discussed in more than one group, with emphasis placed on
the aspect most relevant to that group.

Auxiliary Loss Auxiliary losses are incorporated into surrogate models to refine the training process by
targeting specific model behaviors, particularly regularization. For instance, Trabucco et al. (2021) trains
the surrogate to systematically underestimate the true objective on out-of-distribution inputs by identifying
potential adversarial examples via gradient ascent and penalizing the surrogate’s predictions at these points,
thereby enforcing a conservative estimate. Similarly, Yu et al. (2021) smooths the training data with a
Gaussian filter, finds the weight perturbation that maximizes the loss, and then adjusts the model parameters
to maintain local smoothness with respect to both the inputs and the weights. In the same vein, Dao et al.
(2024a;b) incorporate measures of model sharpness and sensitivity, respectively, as additional regularizers.
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Further, Chen et al. (2022b; 2023b) propose a bidirectional learning framework that integrates knowledge
from an offline dataset into a high-performing design using both forward and backward loss mappings. Here,
a kernel-based model provides a closed-form solution while the backward mapping serves as a regularizer to
mitigate the impact of out-of-distribution inputs. Strictly speaking, this framework does not regularize the
surrogate itself but rather the behavior of the optimized designs.

In Qi et al. (2022a), offline MBO is reframed as a domain adaptation problem by treating the offline dataset as
the source domain and the optimized designs as the target domain. A distance loss between these distributions
is employed to train the surrogate, ensuring it produces mediocre predictions when the optimized designs
deviate significantly from the training data. Furthermore, Hoang et al. (2024) shows that the quality of
optimization correlates with how well the surrogate aligns with the latent gradient field underlying the offline
data, and it proposes a loss function to enforce this gradient matching. Moreover, ranking losses have been
shown to offer greater robustness compared to the traditional pointwise mean squared error loss: Chen
et al. (2023a) employs a pairwise ranking loss, whereas Tan et al. (2025) utilizes a listwise ranking loss.
Finally, auxiliary losses naturally extend to multi-objective settings. Multi-task learning techniques such as
GradNorm (Chen et al., 2018) and PcGrad (Yu et al., 2020) can be used so that learning one property via a
surrogate task aids in predicting another—a valuable capability in domains like biology where labeled data is
often limited (Xu et al., 2022).

Data-Driven Adaptation Data-driven adaptation generally falls into three categories:

• Sample Reweighting This method assigns higher weights to samples deemed more relevant. For instance,
Yuan et al. (2023) leverages bi-level optimization (Chen et al., 2022a) to learn weights for generated
samples, thereby mitigating noise and enhancing surrogate. Similarly, AutoFocus calculates offline sample
weights as the ratio of the probability under the search model to the initial probability, effectively refining
the surrogate in the most relevant design regions (Fannjiang & Listgarten, 2020).

• Synthetic Data Generation Synthetic data is extensively used in offline MBO. For example, Trabucco
et al. (2021) employs gradient ascent to generate adversarial designs, penalizing the surrogate on these
points. Moreover, Chen et al. (2023a) and Yuan et al. (2023) apply pseudo-labeling for nearby points
based on surrogate predictions, filtering out noisy samples to further improve the surrogate.

• Domain Knowledge Injection Incorporating domain-specific knowledge can enrich the surrogate
model’s understanding and enhance its extrapolation capabilities. For instance, Chen et al. (2023b)
leverages a pre-trained biological language model—trained on millions of biological sequences—as a feature
extractor, yielding superior performance compared to models without pre-training. Furthermore, Kuba
et al. (2024b) introduces Functional Graphical Models that build a data-specific graph capturing functional
independence properties, thereby imposing a structural bias that benefits black-box optimization and
mitigates distribution shifts.

These data-driven techniques are applicable not only to surrogate modeling but also to generative modeling,
as discussed in Section 5. In addition to auxiliary losses and data-driven adaptations, training strategies also
benefit from insights drawn from peer models and generative models, as described next.

Collaborative Ensembling Ensemble learning techniques combine predictions from multiple models to
achieve improved performance and generalization compared to individual base learners (Hansen & Salamon,
1990; Dietterich, 2000). In the context of offline MBO, recent studies have focused on developing ensemble-
based surrogate models tailored to these settings. For example, Chen et al. (2023a) and Yuan et al. (2023)
employ a mean ensemble of surrogates, wherein multiple models exchange valuable sample information
during optimization to enhance learning—contrasting with traditional ensembles that generally interact
only during aggregation. Additionally, Fu & Levine (2021) introduces an innovative approximation of the
normalized maximum-likelihood (NML) distribution to construct an uncertainty-aware forward model. For
each optimization point, the approach assigns multiple labels and trains separate models on each point-label
pair, with the resulting ensemble estimating the conditional NML distribution to provide robust surrogate
predictions that guide the design optimization process. Furthermore, Kolli (2023) tackles gradient conflicts
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among ensemble members by employing multiple gradient descent steps and conflict-averse gradient descent,
thereby striking a balance between conservatism and optimality.

Generative Model Integration Surrogate models often guide the sampling process of generative models,
and in turn, several studies leverage insights from generative models to further enhance surrogate modeling.
For instance, Fannjiang & Listgarten (2020) employs a variational autoencoder to model both the offline
data distribution and the search model distribution, using the ratio of these probabilities as an importance
weight to retrain the surrogate. Similarly, Qi et al. (2022a) trains a GAN discriminator to differentiate
between the offline distribution and the desired design distribution, subsequently fine-tuning the surrogate to
yield mediocre predictions when designs deviate significantly from the offline data. Moreover, Chen et al.
(2024) derives a conditional distribution from a diffusion model, which is used to regularize the surrogate by
minimizing the KL divergence between the surrogate’s output and the derived distribution.

4.4 Sampling Strategy

Once the surrogate model is trained, gradients are computed to guide the sampling process. The typical
procedure is outlined in Equation (3), with the general form given by:

xt+1 = xt + η · OPT
(

∇xfϕ(x)
∣∣
x=xt

)
, for t ∈ [0, T − 1] . (8)

This section discusses key aspects of the sampling process: the learning rate η, the number of iterations T ,
the optimizer OPT, and test-time training.

Learning Rate Selecting an optimal learning rate η poses a significant challenge in offline MBO due to the
absence of a dedicated validation set. While Beckham et al. (2024) suggests the introduction of a validation
set in offline MBO, this method may require sacrificing some high-performance data. On the other hand,
Trabucco et al. (2022) recommends a learning rate of 2

√
d for discrete tasks and 0.05

√
d for continuous

tasks, where d represents the dimension of the design space. The higher learning rate in discrete spaces
accommodates their unique properties, and scaling by

√
d compensates for the increase in the overall gradient

norm as dimensionality increases. Additionally, Chen et al. (2023b) proposes training an auxiliary model
to provide weak supervision signals for optimizing the learning rate, thus enhancing sampling effectiveness.
Similarly, Chemingui et al. (2024) formulates offline MBO as an offline reinforcement learning problem,
where a learned policy takes the current design as input and outputs the optimal learning rate; however, this
approach may still be vulnerable to reward hacking due to out-of-distribution issues in the surrogate model.

Number of Iterations The number of optimization steps, denoted as T , is another vital hyperparameter.
Determining the appropriate T is challenging due to the absence of a ground-truth function, which raises
concerns about overfitting. This hyperparameter also correlates with the learning rate: a higher learning rate
might necessitate a smaller T to avoid deviating from the distribution. The strategy suggested by Trabucco
et al. (2021) involves using 50 steps to generate adversarial samples and regularizing the surrogate model
based on these samples. Subsequently, a similar 50-step approach is employed during the sampling phase.
Meanwhile, Yu et al. (2021); Fu & Levine (2021) report that their methods remain robust even as T increases.
Furthermore, Damani et al. (2023) proposes training a binary classifier to distinguish offline data from design
data, observing that the degree of distribution shift depends on T . The classifier logits serve as a proxy for
distribution shift, allowing users to constrain T to regions where the surrogate predictions remain reliable.

OPT The term OPT denotes the optimizer, which can be an algorithm such as SGD, Adam, etc. (Ruder,
2016). These optimizers are typically applied to offline SOO. In offline MOO, however, multiple gradients
must be managed simultaneously. A naive approach of computing a weighted sum of these gradients often
results in conflicts that hamper effective optimization. Recent methods address these conflicts: the multiple
gradient descent algorithm (Désidéri, 2012) finds a common descent direction by assigning nonnegative
weights that minimize the norm of the combined gradient, while PCGrad (Yu et al., 2020) resolves conflicts
by projecting one gradient onto the orthogonal space of another when their inner product is negative, thereby
enhancing robustness in multi-objective settings.
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Test-Time Training A common sampling strategy involves adapting the surrogate model at the current
optimization point. While this concept overlaps with the training strategies discussed in Section 4.3, the focus
here is on fine-tuning the surrogate locally. Given the impracticality of optimizing the surrogate globally, it is
more feasible to refine its performance near the current point. For example, Fu & Levine (2021) estimates the
conditional normalized maximum likelihood by incorporating the current point into the surrogate modeling
process, and (Yu et al., 2021) adjusts the surrogate to increase local smoothness. Moreover, Chen et al.
(2023a); Yuan et al. (2023) generate pseudo pairwise and pointwise labels in the neighborhood to further
refine the surrogate’s local behavior.

5 Generative Modeling

In addition to surrogate modeling described in Section 4, generative modeling plays a pivotal role in offline
MBO. The high-dimensionality of design spaces renders exploration challenging, and generative models offer
an effective means to navigate these spaces. As detailed in Eq. (7), offline optimization can be framed as a
conditional generation problem, where the objective is to model the distribution p(x | yc) with yc representing
the target conditions. By Bayes’ rule, this distribution is proportional to the product of the prior p(x) and
the likelihood p(yc | x). Broadly, two categories of conditional generation emerge in this context:

• Inverse This approach directly trains a conditional generative model to learn the mapping from target
conditions yc to designs x, thereby capturing p(x | yc) and enabling conditional sampling.

• Forward This approach leverages a surrogate model for p(yc | x) to steer an unconditional generative
model p(x) toward desirable designs. A notable special case is the use of direct gradient ascent, which
bypasses the need to explicitly model the generative component p(x).

In the remainder of this section, we first outline the general principles of these generative models—including
variational autoencoder (VAE) (Kingma & Welling, 2014), generative adversarial network (GAN) (Goodfellow
et al., 2014), autoregressive model (Vaswani et al., 2017), diffusion model (Ho et al., 2020), flow match-
ing (Lipman et al., 2023) and energy-based model (EBM) (LeCun et al., 2006)—followed by a discussion on
how they achieve conditional generation within offline MBO. Finally, we introduce Generative Flow Network
(GFlowNet) (Bengio et al., 2023), a versatile control strategy applicable to a wide range of generative models.

5.1 Variational Autoencoder (VAE)

General Principle Variational Autoencoders (VAEs) integrate ideas from variational inference and au-
toencoders to learn a probabilistic latent representation z for the data x (Kingma & Welling, 2014). The
model expresses the data likelihood as

p(x) =
∫

p(x|z) p(z) dz,

and introduces an approximate posterior qψ(z|x) to facilitate efficient inference.

In particular, the VAE adopts an encoder–decoder architecture: the encoder approximates the posterior
qψ(z|x), while the decoder models the likelihood pθ(x|z). The model is trained by maximizing the evidence
lower bound (ELBO):

LVAE(x) = Eqψ(z|x) [log pθ(x|z)] − KL
(

qψ(z|x) ∥ p(z)
)

.

Both the likelihood term pθ(x|z) and the prior p(z) (typically chosen as N (0, I)) are usually modeled as
Gaussian distributions. The KL divergence acts as a regularizer that promotes stable training, though balancing
reconstruction accuracy with latent regularization—and addressing issues like posterior collapse—often requires
careful tuning (Higgins et al., 2017). Sampling from a VAE is performed by drawing a latent code z from the
prior p(z) and then generating x using the decoder pθ(x|z).
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Conditional Generation In the context of VAEs, conditional generation can be achieved through two
categories of methods: inverse and forward methods. The inverse method directly trains a label-conditioned
VAE to learn the mapping from target conditions to designs. For example, Brookes et al. (2019) adaptively
trains the VAE on high-performing designs (such as protein sequences), enabling the direct sampling of
promising candidates without the need for an external surrogate model.

In contrast, forward methods are more commonly employed, leveraging the continuous latent space of the
VAE. Here, an unconditional VAE is first trained to embed designs into a continuous latent space, after which
a surrogate model supplies gradient information to steer the latent codes toward regions corresponding to
improved designs. This approach is particularly beneficial for discrete design optimization, as demonstrated
by works on general discrete designs (Yu et al., 2021) and discrete molecules (Gómez-Bombarelli et al.,
2018), which map these designs into a latent space amenable to gradient-based optimization. Together, these
methods illustrate how VAEs can effectively navigate high-dimensional design spaces, either by directly
conditioning on target attributes via the inverse method or by leveraging gradient-driven manipulations
within the latent space via the forward method.

We also briefly compare VAEs and normalizing flows (Kobyzev et al., 2020), as both models map designs
to latent spaces and back. While VAEs rely on a learned encoder–decoder architecture, normalizing flows
use carefully designed invertible operators to establish a one-to-one correspondence between the latent and
input spaces. Lee et al. (2025) observes that this invertibility effectively mitigates the reconstruction gap
often seen in VAEs—which can cause property discrepancies between original and reconstructed designs.
Consequently, they propose a normalizing flow model for MBO, including the SeqFlow variant for sequence
designs, to address these issues directly. Although the application of normalizing flows in offline model-based
optimization (MBO) remains relatively limited, they represent a promising direction for future research.

5.2 Generative Adversarial Network (GAN)

General Principle Generative Adversarial Networks (GANs) introduce an adversarial training framework in
which a generator network Gθ(z) and a discriminator network Dψ(x) compete against each other (Goodfellow
et al., 2014). The generator maps noise z (sampled from a simple distribution, such as N (0, I)) into the
data space, while the discriminator attempts to distinguish real data from generated samples. The standard
training loss is formulated as a minimax game:

min
θ

max
ψ

Ex∼pdata(x) [log Dψ(x)] + Ez∼p(z)
[
log

(
1 − Dψ(Gθ(z))

)]
.

Originally proposed for image generation, GANs are renowned for their ability to produce sharper and
more realistic outputs compared to VAEs, although they are also known for training instability. Various
strategies, such as Wasserstein GAN (Arjovsky et al., 2017), have been introduced to improve convergence.
For sampling, GANs draw noise and use the generator to synthesize realistic samples. Generally speaking,
unlike VAEs, standard GANs do not provide an explicit latent code for a given sample, though extensions
like BiGANs (Donahue et al., 2017) offer a means to recover latent representations.

Conditional Generation GAN-based conditional generation is typically achieved via inverse methods,
owing to the absence of an inherent latent code in standard GANs. In such frameworks, both the generator
and discriminator are conditioned on target labels to steer the sampling process. For instance, Kumar &
Levine (2020) employs a conditional GAN where the discriminator, parameterized as Dψ(x | y), is trained to
output 1 for valid (x, y) pairs (i.e., when x comes from the data and y = f(x)) and 0 for generated pairs(
Gθ(z, y), y

)
. Here, the generator acts as the inverse mapping Gθ(z, y), taking both the latent noise z and

the condition label y as inputs. This setup is optimized using the following objective:

min
θ

max
ψ

Lp(D) = Ey∼p(y)

[
Ex∼pD(x|y)

[
log Dψ(x | y)

]
+ Ez∼p0(z)

[
log

(
1 − Dψ

(
Gθ(z, y) | y

))]]
. (9)

This formulation corresponds to matching the true conditional distribution pD(x | y) with the model
distribution pGθ (x | y) (obtained by marginalizing over z). During guided sampling, for a given target y, the
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latent variable z is first sampled and then optimized such that the output of the forward model, fϕ
(
Gθ(z, y)

)
,

closely approximates y. This process quantifies the agreement between the learned inverse map and an
independently trained forward model fϕ, ensuring that the generated sample Gθ(z, y) not only satisfies
the desired condition but also lies on the valid data manifold. Importance reweighting is also employed to
construct a p(y) that assigns high probability to high y values.

Besides these inverse methods, the discriminator of GANs is often utilized to detect whether a design is
out-of-distribution, thereby regulating the optimization process of surrogate models (Qi et al., 2022b; Yao
et al., 2024). Although both surrogate models and generative models have been explored in this context,
these methods are technically not GAN-based forward methods, as they do not optimize the latent code
within the GAN framework but rather use the discriminator to regularize the behavior of surrogate models.

5.3 Autoregressive Model

General Principle Autoregressive models are widely adopted for generative tasks, particularly in language
modeling. Notable examples include LSTMs (Hochreiter, 1997) and Transformer-based models (Vaswani et al.,
2017; Brown et al., 2020), which factorize the joint distribution in an autoregressive manner. Specifically, the
joint probability of a sequence is expressed as:

pθ(x) =
N∏

i=1
pθ (xi | x<i) ,

and the model is typically trained by maximizing the log-likelihood, often using the cross-entropy loss for
discrete tokens. During generation, elements are sampled sequentially, with each new token conditioned on
the previously generated tokens.

Conditional Generation Latent representations for the design exist within autoregressive models, enabling
forward methods that manipulate these latents via gradient optimization. For example, Dathathri et al.
(2020) proposes using gradients from a surrogate model to adjust the language model’s hidden activations,
thereby guiding the generation process. However, directly manipulating these latent representations is not
widely adopted, likely because design properties depend on the sequence as a whole; modifying a token’s
latent representation without accounting for subsequent tokens can be less robust.

In autoregressive models, inverse methods are commonly applied and can be categorized into two types.
The first type models a single sequence design, a strategy often employed in biological sequence design. For
instance, Angermüller et al. (2020) utilizes an autoregressive model for biological sequences, using a surrogate
as a reward and applying reinforcement learning to generate high-performing sequences. Similarly, Kim et al.
(2023) employs an LSTM-based autoregressive model to generate biological sequences, then re-trains the
generator using synthetic data labeled by the surrogate, assigning higher sample weights to high-performing
synthetic sequences during training.

The second type models a sequence of designs and labels, aiming to capture the relationship between designs.
In this line, Nguyen et al. (2023) pre-trains an autoregressive transformer on related and synthetic datasets
and performs in-context learning by providing the offline dataset as context. A high-score label yc is then used
as a query to guide design generation. Additionally, Mashkaria et al. (2023) constructs a trajectory dataset
by sorting samples based on score and trains an autoregressive model on this trajectory. During sampling,
the model generates candidate points by rolling out a trajectory that implicitly serves as the condition yc,
thereby guiding the generation process in an inverse manner.

5.4 Diffusion Model

General Principle Diffusion models, a subset of latent variable models, gradually perturb data by injecting
Gaussian noise during the forward process. The reverse process iteratively denoises the data using a learned
score estimator (Ho et al., 2020). These models can be represented in a continuous framework via a stochastic
differential equation (SDE), as discussed in Song et al. (2021). The forward SDE is expressed as:

dx = h(x, t) dt + g(t) dw, (10)
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where h(·, t) : Rd → Rd denotes the drift coefficient, g(t) : R → R is the diffusion coefficient, and w
represents a standard Wiener process. This formulation progressively converts the data distribution into a
noise distribution. The reverse process is characterized by:

dx =
[
h(x, t) − g(t)2∇x log pt(x)

]
dt + g(t) dw̄, (11)

with ∇x log pt(x) indicating the score of the marginal distribution at time t, and w̄ symbolizing the reverse-time
Wiener process. The score function is approximated using a time-dependent neural network sθ(xt, t), which
facilitates the transformation of noise back into samples. They have demonstrated exceptional performance
in synthesizing high-fidelity images and a wide range of complex data types.

Conditional Generation Conditional generation in diffusion models has been extensively studied and can
also be broadly classified into two categories: inverse methods and forward methods.

In inverse methods, the conditional diffusion model is trained using either vanilla guidance, where the label
or condition is directly provided as an input (Chang et al., 2023), or classifier-free guidance, which derives
guidance by contrasting the outputs of a conditional model with those of an unconditional model (Ho &
Salimans, 2022). For example, Zhang et al. (2024) proposes a vanilla guidance approach that learns a
weight function to assign higher weights to high-performing designs. This method focuses the training of
the diffusion model sθ(xt, yc) on high-performing designs, using them as implicit high-performing conditions
yc during sampling. However, vanilla guidance lacks an adjustable parameter to control sampling strength,
which motivates the use of classifier-free guidance where the strength can be tuned via a parameter ω. The
corresponding score function is defined as follows:

s̃θ(xt, yc, ω) = (1 + ω)sθ(xt, yc) − ωsθ(xt). (12)

Krishnamoorthy et al. (2023) successfully apply classifier-free guidance to offline MBO by inputting the
maximum value yc from the offline dataset to produce high-performing designs. Building on this, Chen et al.
(2024) explore using a surrogate model to guide the parameter ω. Similarly, Yun et al. (2024) extend the
method by incorporating not only the target property yc but also the entire trajectory into the conditional
model to steer generation. In another work, Dao et al. (2025) generate synthetic data and train diffusion
models to map low-performance samples to high-performing designs; during sampling, the offline samples
serve as initial samples and the diffusion model progressively guides them toward higher-performance designs.

In contrast, forward methods such as classifier guidance (Dhariwal & Nichol, 2021) employ a surrogate model
to steer the sampling process. The score function for classifier guidance is given by:

s̃θ(xt, yc, ω) = sθ(xt) + ω∇xt
log pϕ(yc|xt). (13)

In this context, Lee et al. (2023) investigate guided molecule generation toward high-performing regions with
respect to target properties such as protein-ligand interactions, drug-likeness, and synthesizability. In Yuan
et al. (2024b), gradient ascent is first employed to optimize the design. To address potential out-of-distribution
issues, the method subsequently recovers the corresponding latent representation by injecting diffusion noise
and then applying a denoising procedure, yielding a sample that conforms to the diffusion prior. This
approach can be interpreted as a variant of classifier guidance due to its use of classifier gradient. Compared
to classifier-free guidance, classifier guidance is less frequently adopted, likely due to the additional training
cost of an extra surrogate model and the potential risk of reward hacking associated with the classifier.

5.5 Flow Matching

General Principle Flow matching learns a vector field v(x, t) that defines a deterministic flow by solving
an ordinary differential equation (Lipman et al., 2023; Le et al., 2023). Notably, v(x, t) can be used to derive
the score ∇x log pt(x) and vice versa (see Lemma 1 in Zheng et al. (2023)). This demonstrates that diffusion
models and flow matching follow the same probability path under certain constraints.

Flow matching defines a time-dependent conditional probability trajectory pt(x | x1) for t ∈ [0, 1], starting
from p0(x | x1) = q(x) and evolving toward an approximate Dirac delta, p1(x | x1) ≈ δ(x − x1), where x1 is
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drawn from pdata. This evolution is conditioned on a specific data sample x1 and driven by a time-dependent
vector field ut(x | x1). A neural network with parameters θ is used to learn the marginal vector field,

v̂(x, t; θ) ≈ v(x, t) = Ex1∼pt(x1|x)

[
ut(x | x1)

]
, (14)

which acts as a neural ODE that transforms the noise distribution q(x) into the data distribution pdata(x).

Following Pooladian et al. (2023), the process begins by sampling a noise vector x0 from q(x0) and linearly
interpolating it with a data point x1 via x | x1, t = (1 − t)x0 + tx1 (with x0 ∼ q(x0)). The corresponding
conditional vector field is defined as ut(x | x1) = x1−x

1−t , which, given the interpolation, simplifies to
ut(x | x1) = x1 − x0. The training objective minimizes the loss

L(θ) = Et, pdata(x1), q(x0) ∥v̂(x, t; θ) − (x1 − x0)∥2
. (15)

Once trained, the vector field v̂(x, t; θ) is used to generate new samples by integrating the neural ODE.

Conditional Generation Because flow matching closely resembles diffusion models, analogous conditional
generation techniques can be applied. In particular, both inverse method classifier-free guidance (Zheng
et al., 2023) and forward method classifier guidance (Dao et al., 2023) are readily adaptable within the flow
matching framework. Regarding the inverse method, Stärk et al. (2024) introduce Dirichlet flow matching
on the simplex and extend classifier-free guidance to more effectively steer the sequence generation process.
In the forward method, Yuan et al. (2024a) investigate the use of multiple surrogate models to guide flow
sampling toward the Pareto-front in multi-objective optimization settings. Moreover, Chen et al. (2025)
propose training an affinity predictor to steer protein conformation sampling toward stable configurations
within the AlphaFlow framework (Jing et al., 2024).

Given flow matching’s emerging success and its demonstrated advantages in performance and efficiency over
diffusion models, we anticipate a surge in research exploring its applications to offline MBO.

5.6 Energy-Based Model

General Principle Energy-based Models (EBMs) define an unnormalized probability distribution over
data via an energy function Eθ(x) (LeCun et al., 2006):

pθ(x) =
exp

(
−Eθ(x)

)
Z(θ) ,

where Z(θ) denotes the partition function. Training EBMs typically aims to assign lower energy to observed
data while raising the energy of samples drawn from the model. A common objective is contrastive divergence:

LEBM = Ex∼pdata(x) [Eθ(x)] − Ex∼pθ(x) [Eθ(x)] .

This formulation encourages the model to distinguish between real data and generated (negative) samples.

Sampling from an EBM is challenging due to the intractability of the partition function, and it generally
relies on Markov Chain Monte Carlo (MCMC) techniques (Neal, 1993; Hinton, 2002; Tieleman, 2008). A
widely used approach is Langevin dynamics (Welling & Teh, 2011), with the iterative update:

xk+1 = xk − ϵ

2∇xEθ(xk) +
√

ϵ ηk, ηk ∼ N (0, I),

where ϵ is the step size. This stochastic process, which introduces Gaussian noise ηk, is designed to
asymptotically sample from pθ(x). Often, hundreds to thousands of iterations are needed to ensure adequate
mixing, and slow mixing remains a notable challenge, especially in high-dimensional spaces.

EBMs provide a flexible framework for modeling complex data distributions by directly parameterizing an
energy function. While they share a fundamental relation with score-based models (Song et al., 2021)—since
∇x log pθ(x) = −∇xEθ(x)—the two approaches diverge in practice: EBMs require explicit energy modeling
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and rely on MCMC-based sampling (e.g., via Langevin dynamics), whereas score-based models aim to directly
learn the score function without necessarily specifying an energy function. We note that GFlowNets (Bengio
et al., 2023) can amortize the MCMC process, making them applicable to EBMs (Zhang et al., 2022).
Although these methods enable faster mode mixing to estimate the partition function to compare with MCMC
methods, thus improving the practicality of EBMs, none of these techniques have been applied to offline
optimization. We believe that exploring this direction could offer promising avenues for future research.

Conditional Generation Conditional generation in the context of EBMs can similarly be classified into
inverse and forward methods. For instance, Frey et al. (2024) maps protein sequences into a latent space
during an initial jump step and trains an EBM on this latent representation—assigning lower energy to
observed data while penalizing generated samples with higher energy. In the subsequent walk step, Langevin
MCMC is employed to sample new latent codes, with a binary projection matrix ensuring that specified
regions of the sequence remain unchanged.

Similarly, Yu et al. (2024) introduces a method that jointly embeds design and properties into a compact yet
expressive energy-based latent space. In this approach, the highest offline dataset score, yc, is used to sample
a latent code z, which is then decoded to yield the design x. We categorize this method as forward, since the
sampling of z is governed by

p(z | yc) ∝ pθ(z) pϕ(yc | z),

with an explicitly modeled surrogate whose gradient is leveraged via SVGD (Liu & Wang, 2016).

It is important to note that the distinction between forward and inverse methods in EBMs is often subtle, as
both the energy function and a surrogate model essentially map a design to a scalar value. In Beckham &
Pal (2023), the authors reinterpret the original forward method, COMs, as an EBM trained via contrastive
divergence. COMs optimizes two losses—a mean-squared error loss for surrogate modeling and a conservative
objective for the EBM—using a shared network architecture, where the resulting energy function steers the
sampling process towards high-performing designs, a characteristic typically associated with inverse methods.
Moreover, Beckham & Pal (2023) further proposes a decoupled version of COMs, in which separate networks
are employed for the surrogate and the EBM, reinforcing its classification as a forward method.

5.7 Control by Generative Flow Network (GFlowNet)

Unlike earlier sections that focus on general generative models and their conditional generation approaches,
this section introduces a control method for these models: Generative Flow Networks (GFlowNets), which
have recently gained popularity. GFlowNets (Bengio et al., 2021; 2023) model the generative process as a
sequential decision-making problem, where a complete candidate solution x is constructed through a sequence
of transitions. Their goal is to perform amortized inference by sampling from a distribution proportional
to a reward function, i.e., p(x) ∝ R(x). This approach produces samples that are both high-reward and
diverse, which is particularly beneficial when the reward function is an imperfect surrogate learned from an
offline dataset. In contrast, standard RL methods that simply maximize R(x) can be unsafe under epistemic
uncertainty, making GFlowNets especially attractive in offline optimization scenarios.

It is important to note that GFlowNets represent a learning method rather than a standalone generative
model. Their sequential decision-making process is typically implemented by generative models such as
autoregressive models, diffusion models, or any model that provides sequential inference structures.

GFlowNets Contraints In GFlowNets, a sample x is generated by traversing a directed acyclic graph
from an initial state s0 to a terminal state sT = x through a sequence of transitions:

s0 → s1 → · · · → sT = x.

The central training criterion enforces flow consistency: for each intermediate state s′, the total incoming
flow must equal the total outgoing flow:∑

s∈Parents(s′)

F (s; θ) PF

(
s′ | s; θ

)
= F (s′; θ).
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At the terminal state, the flow is fixed to the reward,

F (sT ; θ) = R(x),

which serves as the surrogate objective in this work.

A common way to implement flow consistency is via the detailed balance (DB) condition, introducing a
backward policy PB(s | s′; θ) to match flows:

F (s; θ) PF

(
s′ | s; θ

)
= F (s′; θ) PB

(
s | s′; θ

)
, s′ ∈ Children(s).

This one-step condition is similar to temporal-difference (TD) learning in RL. It can be extended to longer
trajectories: a partial subsequence sm → · · · → sl (sub-trajectory balance, Sub-TB (Madan et al., 2023)) or
a complete sequence s0 → · · · → sn = x (trajectory balance, TB (Malkin et al., 2022)). These extensions are
analogous to TD-λ and Monte Carlo learning methods. Sub-TB is formulated as:

F (sm; θ)
l∏

i=m+1
PF

(
si | si−1; θ

)
= F (sl; θ)

l∏
i=m+1

PB

(
si−1 | si; θ

)
,

while the TB condition is:

Zθ

n∏
i=1

PF

(
si | si−1; θ

)
= R(x)

n∏
i=1

PB

(
si−1 | si; θ

)
,

where Zθ = F (s0) is the partition function and R(x) = F (sn) is the terminal reward.

Recent work refines TB for posterior inference by introducing relative trajectory balance (RTB) (Venkatraman
et al., 2024), where

ppost(x) ∝ pprior(x) R(x).
In RTB, the backward policy PB is replaced by a prior distribution Pprior, yielding:

Zθ

n∏
i=1

Ppost
(
si | si−1; θ

)
= R(x)

n∏
i=1

Pprior
(
si | si−1

)
.

This can be applied to active learning and offline optimization, allowing for a conservative strategy by
restricting samples to the prior distribution learned from offline data, thus reducing risk under uncertainty.

Controlling Generative Models via GFlowNets During sampling, a GFlowNet sequentially selects
transitions based on its learned policy until reaching a terminal state x. This sequential framework is
particularly effective for exploring high-dimensional spaces and generating diverse candidate solutions. In
offline MBO, guided sampling via GFlowNets is especially natural.

For example, Jain et al. (2022) generates desirable biological sequences from scratch by defining a target
reward function as a UCB score from a surrogate model. To improve robustness against the imperfections of
the surrogate model at early stages, Kim et al. (2024a) conservatively search promising regions by introducing
a parameter δ, which is adjusted based on the prediction model’s uncertainty. Additionally, Ghari et al. (2023)
utilize GFlowNets to modify existing sequences to enhance target properties, while Jain et al. (2023) employ
conditional GFlowNets to generate diverse Pareto-optimal solutions for multi-objective optimization problems.
Note that they use autoregressive models to produce these biological sequences and employ GFlowNets to
control them effectively.

One of the main challenges in offline optimization is the exploration-exploitation trade-off. Unlike RL,
GFlowNets can effectively balance exploration and exploitation using a temperature parameter β, i.e.,
p(x|β) ∝ R(x)β . Kim et al. (2024b) propose an effective way to learn such a policy by introducing a logit
scaling network and verify that it achieves high extrapolation ability in offline optimization tasks. They use
directional token generative models, which can generate sequences by prepending or appending tokens, and
employ GFlowNets to control them.
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We can also formulate the offline optimization problem as posterior inference, where we have a pre-trained
policy p(x) and a reward function R(x) trained on a given dataset. In this setting, we can use the RTB
loss to obtain an unbiased sampler that amortizes the posterior distribution. For example, Yun et al. (2025)
propose a posterior inference method with GFlowNets for diffusion models in black-box online optimization.
This work may provide a key insight for applying posterior inference with GFlowNets to offline optimization.

6 Discussion and Future Direction

In this paper, we present a comprehensive review of offline MBO. Despite significant efforts to develop robust
surrogate models and generative models, many practical challenges remain. Offline MBO is inherently difficult
due to the limited availability of offline datasets and the epistemic uncertainty that plagues surrogate models.
In this section, we outline promising future research directions aimed at addressing these challenges, including
the development of more rigorous benchmarks, improved uncertainty estimation methods, innovative graphical
modeling approaches for surrogate modeling, advanced generative modeling techniques, and high-impact
applications in LLM alignment and AI safety.

Robust and Realistic Benchmarking Current benchmarks in offline MBO face two major challenges.
First, some benchmarks—such as TFB8 and TFB10 (Barrera et al., 2016a)—offer overly constrained search
spaces where even simple gradient ascent methods can achieve impressive results, making it difficult to distin-
guish the performance of more sophisticated algorithms. Second, benchmarks like superconductor (Hamidieh,
2018) often rely on learned oracles for evaluation, which can be vulnerable to manipulation and may not
accurately reflect true performance. Moving forward, it is essential to develop benchmarks that not only
present more challenging search spaces but also incorporate rigorous, reliable evaluation protocols that are
resistant to exploitation.

Uncertainty Estimation of Surrogate Model In offline optimization, capturing the significant epistemic
uncertainty in surrogate models is paramount, especially because identifying which inputs drive this uncertainty
remains a core challenge. While uncertainty estimation is similarly important in online optimization, in
offline scenarios it is even more critical for preventing reward hacking, as one cannot correct for flawed model
predictions through active data collection. Various techniques—such as adversarial regularization (Trabucco
et al., 2021), smoothness priors (Yu et al., 2021), and kernel-based methods (Chen et al., 2022b)—have been
proposed to mitigate uncertainty and ensure safer optimization; however, there has been comparatively little
focus on leveraging Bayesian methods for directly quantifying epistemic uncertainty. Moreover, existing
benchmarks often emphasize overall optimization performance without clarifying whether observed gains stem
from superior surrogate modeling, improved optimization strategies, or mere chance. This lack of distinction
underscores the need for independent and rigorous evaluations of the uncertainty estimation capabilities
of the surrogate model in newly developed algorithms. Although recent efforts—such as Jain et al. (2022)
using Monte Carlo (MC) dropout (Gal & Ghahramani, 2016) and deep ensembles (Lakshminarayanan et al.,
2017), and Kim et al. (2024a) incorporating uncertainty measures for conservative search—have made inroads
into this area, they still fall short of providing a robust solution. Consequently, advancing offline MBO
demands a fundamentally stronger approach to uncertainty quantification that transcends basic MC dropout
or ensembling techniques.

Future work may build upon this line of research by exploring recent methodologies such as:

• DEUP: Direct Epistemic Uncertainty Prediction (Lahlou et al., 2023): This approach directly
estimates the excess risk associated with model misspecification by learning a secondary predictor for
generalization error, offering a more principled uncertainty measure.

• Efficient Variational Inference Methods over Neural Network Parameters: Efficient variational
inference methods offer promising solutions for tackling the intractable posterior inference in neural
networks. For example, the Variational Bayesian Last Layer (VBLL) approach (Harrison et al., 2024)
performs inference solely on the final layer, reducing the computational complexity to a quadratic level.
Similarly, GFlowOut, introduced by Liu et al. (2023), leverages GFlowNets—a form of hierarchical
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variational inference (Malkin et al., 2023)—to approximate the posterior distribution over dropout masks,
effectively addressing challenges related to multi-modality and sample dependency. Together, these
methods represent compelling candidates for enhancing uncertainty estimation in surrogate models while
maintaining computational efficiency.

• Deep Kernels: Deep kernels, which leverage deep architectures to learn expressive kernel functions, offer
a scalable alternative to Gaussian processes (Wilson et al., 2016; Liu et al., 2020). They have been applied
to biological sequence design scenarios by employing a denoising autoencoder to learn a discriminative
deep kernel GP for Bayesian optimization of biological sequences (Stanton et al., 2022). This approach was
further refined by Gruver et al. (2023), who used a discrete diffusion model and simple last-layer ensemble
techniques to evaluate uncertainty. These successes in online optimization could be directly transferred to
offline MBO, where uncertainty estimation helps prevent reward hacking. Such a strategy could effectively
combine existing surrogate modeling and generative modeling methods in offline MBO fields.

Graphical Surrogate Model Offline surrogate models often suffer from limited data coverage, making
them vulnerable to overestimation and reward hacking in regions outside the training distribution. A
promising mitigation strategy is to leverage factorized graphical models—such as Functional Graphical Models
(FGMs) (Kuba et al., 2024b)—to decompose a high-dimensional function into a sum of local subfunctions
defined over smaller cliques. This structured factorization enables each subcomponent to be learned from a
subspace with denser data coverage, thereby localizing distribution shifts and enhancing both robustness and
OOD generalization (Kuba et al., 2024a). In addition to FGMs, candidate methods for graph discovery –
such as those based on GFlowNets –offer alternative avenues to uncover latent causal structures (Deleu et al.,
2022). Employing such graphical discovery methods will provide a principled means to address distributional
shifts in offline MBO, ultimately leading to more reliable optimization outcomes under limited data coverage.

Advanced Generative Modeling Many existing offline MBO methods employ relatively simplistic
generative models. For instance, several approaches use basic encoder-decoder architectures that map protein
sequences into a latent logit space for optimization (Trabucco et al., 2022). While such methods capture
general machine learning principles, they often overlook the rich biophysical information embedded in the
data. In applications like protein design, it is crucial to leverage models that integrate domain-specific
knowledge—such as pre-trained language models or structure-aware representations—to more accurately
model the underlying data distribution (Watson et al., 2023). By developing generative models that are
tailored to the unique characteristics of the target domain, future methods can achieve not only improved
optimization performance but also greater interpretability and robustness in real-world applications.

Application to LLM Alignment and AI Safety While offline MBO has traditionally been applied to
design tasks in fields such as biology or chemistry, its methodologies can also be used for post-training large
language models (LLMs). Approaches like supervised fine-tuning (SFT), RLHF (Ouyang et al., 2022), or
RL-based reasoning (Guo et al., 2025), aim to enhance text generation by leveraging reward signals derived
from human preference models or other evaluative metrics. Because these reward models are inherently
uncertain and prone to reward hacking, adopting the conservative and safe optimization techniques developed
in offline MBO can help mitigate such risks. Moreover, since reward hacking can lead to catastrophic
misalignment of superhuman-level intelligence toward harmful ends (Bengio et al., 2025), integrating robust
optimization algorithms from the offline MBO community can further contribute to LLM safety.
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